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Notes 1-5 are relevant to the topics and exercises covered in the 2023 Michaelmas term.
Note 6 is relevant to the topics and exercises covered in the 2024 Lent term.
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1 On reciprocal bases

1.1 Definition

Consider a vector space V with a basis B = {e;};cs, where I is a set of indexes. The reciprocal
(or dual) basis of V is the set B* = {e'};c; with the same index set I such that B and B* form a
biorthogonal system, that is,
; {1 if i = j
e;,-e’ =

0 ifisj

Alternatively, one may write e; - €/ = §;;, where 4;; is the Kronecker delta.

R

1.2 Examples

Example 1.1 (Basis components) Take V = R3 and consider the basis B = {a, b, c}. Take B* =
{A, B,C} as the reciprocal basis of B. Consider any vector d € V written as d = aa + b + vye.
Applying the scalar product with A in both sides of this equation leads to

d-A=ala-A)+Bb A)+y(c A) & d A=a

since, by definition, a- A =1, and b- A = c¢- A = 0. Similarly, d- B = § and d - C = 7. Hence, the
coefficients «, 3, and v for any vector d written in terms of a basis {a, b, ¢} can be obtained via the
scalar product with the vector of the corresponding reciprocal basis.

Example 1.2 (Relation with scalar triple product) The scalar triple product can hint at po-
tential candidates for the reciprocal basis vectors A, B and C in the previous example. The vector
product here is written as x (unlike the A notation from the notes). Recall the property of the scalar
triple product

a-(bxe)=b-(cxa)=c-(axb)=—-a-(cxb)=-b-(dxc)=—-c-(bxa).



Consider A first. Weneeda-A=1,b- A=0and ¢- A =0. A natural choice could be

bxce

A:a~(b><c)

since, using the property of the scalar triple product stated before,

_a-(bxc)
a-A a-(bxec)
_b-(bxe) c-(bxb)
b-4 a-(bxe) a-(bxec)
C.A_c~(b><c):b-(c><c):
a-(bxe) a-(bxe)
Hence, with
cxa
B a-(bxe)
axb
¢ a-(bxc)
it follows that
b.Bib(cxa):a(bxc):
a-(bxe) a-(bxc)
_c-(axb) a-(bxc)
¢ C a-(bxe) a-(bxec)

A similar argument shows that b- A=b-C=c-A=c-B =0.

Example 1.3 (Problem 8(b) from Section C) In this problem, we have

1 0 2 1
a=|(2],b=|0],e=[|-1}),d=|1
1 1 1 1

and we are asked to write the vector d in terms of the basis {a, b, ¢} by using the scalar triple product.
From Example 1.2, we have that, via the scalar triple product, the reciprocal basis is given by

1

A b:c :1 9

a-(bxe) 5 0

-3

cxa 1

B=——"=-1-1

a-(bxe) 5 5

c__axb _1[?

a-(bxe) 5 0

where a - (b x ¢) = 5. Hence, from Example 1.1,

3 1
a=d-A=—-,8=d-B=—-,y=d-C=—

and thus d = %a + %bJr Lle.



2 Shortest distance of a line from a line

We are interested in describing the shortest distance d between two non-parallel lines Ly and Lo in
R3. Assume these are given by

T =a +)\tA1
r = as +utA2

respectively, for A\, u € R. We consider Figure 23 in Section 1.7.3 of the main notes, where the shortest

—
distance d is between two points X and Y. We are essentially interested in describing the vector XY
in two different ways, equating such expressions and solving for d.

First, it is straightforward to see that )ﬁ = du, where 4 is a unit vector that should be perpen-
dicular to both leading vectors ¢, and to, thus given by @ = (t1 X t2)/|t1 X taf.

Second, we may write )ﬁ/}' by looking at the triangle XY O and using the points on each line
- — N N ~ ~
XY:OY—OT(): (a2+ut2)—(a1+)\t1) =ag —a; —|—ut2—/\t1

for some specific A and pu.

Finally, equating the expressions for )ﬁ and applying the scalar product with £, x £, on either
side leads to

t) x t: . .

#:agfalJrthf)\tl

|t1 X t2|

(tAl X tAQ) . (tAl X tAQ) ~ ~ ~ ~ ~ ~
& d |tA » tA | = (0,2 — 0,1) . (t1 X tQ) + (,[Ltg — /\tl) . (t1 X tg)

1 2

|tA1 X tA2|2 ~ ~

<~ dm = (ag — 0,1) . (tl X tg)
1 2

o 4= (CLQ — al) . (tAl X tAg)

|tA1 X tA2|
where we have used the fact that £; and £, are parallel to A, and pts, respectively, and so
(uty — My) - (£ X ty) = pto - (b1 x 3) — My - (£ x £3) =0 —0=0.

We may also think about this scalar product as the projection onto @ = (1 x t2)/[t; X t5|, which gives
the same answer.



3 Integration

3.1 Absolute values

Consider the expression

-1 1
/x_ld:cff/x_ldxfflog|xfl|+0. (1)
On the other hand, we also have, we also have that
-1 1 -1
= =— = —log|l — . 2
/w—ldm /1_xdm /1—xd$ ogll—z|+C (2)

Naturally, |z — 1| = |1 — z|.

3.2 Substitution
Example 3.1 (Problem 10(c) from Section H) We have

/ xz__z d. (3)

There are two ways of solving this exercise. First, we can factor 22 — 1 = (x + 1)(z — 1) to get, by
partial fractions,

-2 1 -1 1+
/x2_1dx:/x+1dx—l—/x_ldx:log|x+l|—log|1—x\+C:10g 1_I)—I—C (4)
Alternatively, one could use the substitution z = tanhu to get
-2 sech?u 1
—dr =2 | ———————du=2u+C =2tanh "z +C 5
/532—1 /lftanh2u (5)

which only holds for |z| < 1. In this interval, the identity 2tanh ™!z = log (ﬁ—i) holds. However,

only the first answer is correct, because the substitution only holds for |x| < 1 and therefore we are
restricting the evaluation of the integral to this specific domain. For all x € R\{—1, 1}, an alternative
way is to write (Figure 1)

-2 1+
———dr =1
/fol v Og‘lx

L= 2tanh 'z + C, for |z| < 1
| 2coth ™z +C, for |z > 1

(6)

— 2tanh 'z

2coth™ 2

-3 -2 -1

14z
l—x|"

Figure 1: Plot of log’




Example 3.2 (Problem 11(b) from Section H) We are asked to find the indefinite integral

eI
= | ———dx.
/ V1 — e

Using the substitution u = e*, we get du = e”dz and thus

1
I= | ——du=sin""(u)+C =sin"'(e*) + C. 8
| = (w () ®)
However, when using the substitution e = cos(u), we get du/dx = —e*/sin(u) and thus

cos(u) d—xdu (9)

/\/1—€2$ = /1 — cos?(u) du
_ _/ cos(u) sin(u) du (10)

sin(u) e

:f/ldu:fquC’:fcos*l(e””)JrC. (11)

We then have two values of the integral: I; = sin~'(e®) +C and I, = — cos~*(e*) + C. However, since

{y = cos(x)

sin™(x cos Hz) =
y =sin(n/2 — x) < (@) + (@)

5 (12)

we see that the difference I — I is a constant (Figure 2), hence they are equivalent answers.

-1.0 -0.8 -0.6 -0.4 -0.2

Figure 2



4 Derivation of inverse hyperbolic functions

Hyperbolic sine

Consider the definition of the hyperbolic sine function

x —Z

sinh(z) = c _26 (13)
To find the inverse, set y = sinh(x) and solve for =
e’ —e "
y:T@ex:y—l—\/yQ—i—l(:)len(y—i—\/yQ—i—l). (14)
Therefore, the inverse hyperbolic sine function is
sinh™'(z) = In(z + V22 + 1). (15)
Hence, the derivative of sinh ™! (z) is
d -1 ].
—sinh™ " (2) = ——. 16
Trsinh (@) = ——— (16)
Hyperbolic cosine
Consider the definition of the hyperbolic cosine function
cosh(z) = %. (17)
To find the inverse, set y = cosh(z) and solve for x
y:%@62I72y6I+1:0. (18)

Solving this quadratic equation for e*, and taking the positive root since e* is always positive, leads

to
ef=y+vy -1 z=In(y+vy>-1). (19)

Therefore, the inverse hyperbolic cosine function is

cosh™ (z) = In(z + V22 — 1). (20)

Hence, the derivative of cosh™ (z) is

d
- cosh™!(z) = T for z > 1. (21)

Hyperbolic tangent

Consider the definition of the hyperbolic tangent function

sinh(z) e*—e™®
tanh(z) = = . 22
anh(z) cosh(z) e*+4e® (22)

To find the inverse, set y = tanh(z) and solve for

et —e *

2x x
=— & -2 1=0. 23
V= e ye" + (23)
Solving for e*
1 1 1
eizﬂ«bx:fln -ty . (24)
1—y 2 1—y
Therefore, the inverse hyperbolic tangent function is
_ 1 1+z
tanh ™' (2) = -1 . 25
™ () = o (1) (25)
Hence, the derivative of tanh™*(z) is
d
%tanh_l(m) =12 for —1<z<1. (26)



5 Alternating series estimation

In Problem 5 (a) from Section I, we are asked to consider the following series, known as the Leibniz
formula for 7,

7T:4Z:1(2_$)_n_1 (27)

and estimate how many terms of this series are needed to calculate 7 to 10 decimal places. Initially,
we could think it would be enough to pick the first term of order n + 1 such that

4

— 10710 28
St -1 20+l (28)

which holds for n > 2 x 10'°. However, some of the following terms might still affect the 10th decimal
place. Let’s study the general case.

Consider a series of the form

S=Y ()" "an, (29)
n=1

where {a,} is a sequence of positive terms. We have the following theorems:
Theorem 5.1 If a, > 0 forn = 0,1,... and if the sequence (a,) decreases monotonically to zero,
then the series

o0

Z(—l)n_lan =a;—az+taz—ag+--- (30)

n=1

converges. Let L be its sum. Moreover, let

S, =a; —as + as —a4+---+(—1)”71an, (31)
R, =1L—S,, (32)

denote its nth partial sum and remainder, respectively. Then
[ Bn| < anqa, (33)
and R, has the sign (—1)".

Theorem 5.2 Let Aa,, = a, — ant1. If, additionally, the sequence (Aa,) converges monotonically
to zero, then

Inil R, < 2. (34)

Let

(35)

From Theorem 5.2, in order to approximate 7 to 10 decimal places, we need to determine the minimum
k such that 5 5

—— <107 <

2k +1 2k —1’
which holds for & = 10'°. It is important to notice that this only sets a bound to the remainder, and
the word accurate is important here, as setting this k does not necessarily guarantee that the 10th
decimal place is exactly accurate. For a question of this nature, however, an answer based on a bound

of the remainder (via either theorem) would suffice.

(36)

Without knowing the number we are approximating, we cannot be sure that a certain level of ac-
curacy determines any particular digit accurately (an example of an arbitrarily long string of zeros or
nines shows this). In numerical analysis, the standard definition of “accurate to k decimal places” is



that the difference between the true value, z, and the approximate value, T have at least k zeros in its
decimal expansion (regardless of rounding to that decimal place), that is

|z — & <5 x 10~ kD, (37)
A refined answer that guarantees this would then be k = 2 x 10'°.

The general question of finding the minimum number of terms needed to calculate 7 accurate to
exactly k decimal places is significantly harder. To understand this, we will look at a simpler example.

Example 5.1 (Approximating 7) Consider again the Leibniz formula for =
e -1 n—1
T=4) (Gt (38)

Now we ask the following question: What is the minimum number of terms needed to calculate esti-
mate 7 with exactly equal first & decimal places? Notice that this is a different question!

Let’s consider k = 2 decimal places for example and set a,, = 2n‘1_1.
consider the remainder of the series and simply use Theorem 5.1

One way to think about this is to

R,| <an R,| < <1072 39
Ral < iy & |Ral < 5 < (39)
which holds for n > 200. Alternatively, Theorem 5.2 yields
An+1 an 2 2
R, < — —— < |Ry| < —— 40
. SMl<g e g <<y (40)

which leads to 99.5 < n < 100.5 and thus n = 100, a refined number. Indeed, either term order satisfies

(oo}
-1 n—1
Royoo =4 Y EU™ L 0.004999968751 < 102 (41)
2n —1
n=201
— (—)"! 2
Rigp=4 5 = 0-009999750031 < 10 (42)
n=101
However, the partial sums give
200 (1)1
=4y 1 ~3.136592 4
Sa00 n; 5~ 3136592685 (43)
100 (1)1
=43 1 ~3.131592904 44
S100 n; — -~ 313159290 (44)

which are not accurate to two decimal places (7 ~ 3.14...). In fact, the minimum value of n that gives
an accuracy to two decimal places was n = 119 (by inspection). Indeed,

119 (—1)n-1

Si1o = 4; oo~ 3149995867 (45)

Riyg =4 i D" 0.008403213004 (46)
e nTp0 2n—1 -

The first 10 minima for “accuracies” k =0, ...,9 are, respectively,

(3,19,119,167,10794, 136121, 1530012, 18660304, 155973051, 1700659132). (47)



6 Exact differentials

Example 6.1 (Percentage errors) The percentage (or percent) error of a certain quantity of inter-
est is defined as the difference between a measured or experiment value and an accepted or known
value, divided by the known value, multiplied by 100%. As an example, let’s consider the volume of a
cylinder V' given as a function of the radius r and height h (see also Problem 5 from Examples Sheet
2). The percentage error is then given by dV/V. The exact differential for V' = V(r, h) is given by

dV =V, dr + Vi, dh (48)

where V,. and V}, are the partial derivatives with respect to r and h, respectively. Then, since V = whr?2,
we have that

dV = (2whr) dr + (7r?) dh. (49)
Finally, dividing by V leads to the percentage error
dv dr dh
- =9 4+ 50
% et (50)

which is the addition of two percentage errors, corresponding to the errors in measuring r and h.
Therefore, the error in a measurement of the volume V' can be determined by the independent errors
in measurements of either r or h. For example, if we have a 0.1% error in measuring 7, and 0.3% in
measuring h, we have that the percentage error in measuring V is given by

av
5 =2 0.1% +0.3% = 0.5%. (51)

Naturally, if both errors in measuring r and h are 0%, the error in measuring V is also 0%.

Example 6.2 (Problem 10 from Examples Sheet 2) When showing identities with exact differ-
entials, the most important point is to write everything with respect to the same variables, whether
we’re dealing with the exact differential form, or in terms of partial derivatives. Here, I will present a
detailed solution to Problem 10 by identifying the relevant variables.

First, note that the enthalpy (like entropy) is a state function which describes the equilibrium
states of a system and implies, therefore, an exact differential. In a system like this, everything is a
variable of everything else, so first, note that if U is regarded as a function of p and V (U = U(p,V)),
then S is also a function of p and V' (S = S(p,V)), and thus, using the differential form of S, we get

oS oS oS as

which is a differential form for U. Hence,

ou a8
e At 53
ou oS
v =Tav P )
from which the second cross-derivatives follow
0*U 0 oS oT 0S 0%S
ovVop 0 dp aVv dp oV aop
0*U 0 oS oT 08 %S
= (T2 —p) = =+ T — 1
opdv — op ( oV p) apov T apav (56)
Since gjgp = 8‘2)28[{/ and 88;3]) = aiiﬁ/, it follows that
T T
oros oroas ] (57)

vV 9V ap



Example 6.3 (Problem 11 from Examples Sheet 2) Similar to Problem 10, a general approach
is to write everything with respect to the same variables. In this case, we want to write dU with
respect to the variables involved in G, which are p and T. Hence, we note that

dU =TdS — pdV =d(ST) — Sdt —d(pV) + V dp. (58)
Rewriting, and using the properties of differentials, we get
d(U +pV — ST) =V dp— SdT. (59)
Hence, G = U + pV — ST (also known as Gibbs free energy).
Other brief notes

e Problem 9.(f) from Examples Sheet 2. Integrating each differential term with respect to
different variables leads to

fa) = [ iz dy =t (£) + () (60)
fla,y) = / IQ:Lny dr = — tan™"! (;) + g2(y) (61)

where g; and g are functions that exclusively depend on x and y, respectively. While the
simplest way to determine f would be to differentiate either of the previous forms, one can also
notice that

an? ()t (4) = st § (62)

where sgn is the sign function.

e Problem 12.(ii) from Examples Sheet 2. To see why the hint is true, notice that

Olnp B 3lnp' oV B 1@‘/ v @ (63)
omV ), \ oV omV /), \pov r p\OV ),
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