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Notes 1-5 are relevant to the topics and exercises covered in the 2023 Michaelmas term.
Note 6 is relevant to the topics and exercises covered in the 2024 Lent term.
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1 On reciprocal bases

1.1 Definition

Consider a vector space V with a basis B = {ei}i∈I , where I is a set of indexes. The reciprocal
(or dual) basis of V is the set B∗ = {ei}i∈I with the same index set I such that B and B∗ form a
biorthogonal system, that is,

ei · ej =

{
1 if i = j

0 if i ̸= j

Alternatively, one may write ei · ej = δij , where δij is the Kronecker delta.

1.2 Examples

Example 1.1 (Basis components) Take V = R3 and consider the basis B = {a, b, c}. Take B∗ =
{A,B,C} as the reciprocal basis of B. Consider any vector d ∈ V written as d = αa + βb + γc.
Applying the scalar product with A in both sides of this equation leads to

d ·A = α(a ·A) + β(b ·A) + γ(c ·A) ⇔ d ·A = α

since, by definition, a ·A = 1, and b ·A = c ·A = 0. Similarly, d ·B = β and d ·C = γ. Hence, the
coefficients α, β, and γ for any vector d written in terms of a basis {a, b, c} can be obtained via the
scalar product with the vector of the corresponding reciprocal basis.

Example 1.2 (Relation with scalar triple product) The scalar triple product can hint at po-
tential candidates for the reciprocal basis vectors A, B and C in the previous example. The vector
product here is written as × (unlike the ∧ notation from the notes). Recall the property of the scalar
triple product

a · (b× c) = b · (c× a) = c · (a× b) = −a · (c× b) = −b · (d× c) = −c · (b× a).
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Consider A first. We need a ·A = 1, b ·A = 0 and c ·A = 0. A natural choice could be

A =
b× c

a · (b× c)

since, using the property of the scalar triple product stated before,

a ·A =
a · (b× c)

a · (b× c)
= 1

b ·A =
b · (b× c)

a · (b× c)
=

c · (b× b)

a · (b× c)
= 0

c ·A =
c · (b× c)

a · (b× c)
=

b · (c× c)

a · (b× c)
= 0.

Hence, with

B =
c× a

a · (b× c)

C =
a× b

a · (b× c)

it follows that

b ·B =
b · (c× a)

a · (b× c)
=

a · (b× c)

a · (b× c)
= 1

c ·C =
c · (a× b)

a · (b× c)
=

a · (b× c)

a · (b× c)
= 1.

A similar argument shows that b ·A = b ·C = c ·A = c ·B = 0.

Example 1.3 (Problem 8(b) from Section C) In this problem, we have

a =

1
2
1

 , b =

0
0
1

 , c =

 2
−1
1

 , d =

1
1
1


and we are asked to write the vector d in terms of the basis {a, b, c} by using the scalar triple product.
From Example 1.2, we have that, via the scalar triple product, the reciprocal basis is given by

A =
b× c

a · (b× c)
=

1

5

1
2
0


B =

c× a

a · (b× c)
=

1

5

−3
−1
5


C =

a× b

a · (b× c)
=

1

5

 2
−1
0


where a · (b× c) = 5. Hence, from Example 1.1,

α = d ·A =
3

5
, β = d ·B =

1

5
, γ = d ·C =

1

5

and thus d = 3
5a+ 1

5b+
1
5c.
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2 Shortest distance of a line from a line

We are interested in describing the shortest distance d between two non-parallel lines L1 and L2 in
R3. Assume these are given by

r = a1 + λt̂1

r = a2 + µt̂2

respectively, for λ, µ ∈ R. We consider Figure 23 in Section 1.7.3 of the main notes, where the shortest

distance d is between two points X and Y . We are essentially interested in describing the vector
−−→
XY

in two different ways, equating such expressions and solving for d.

First, it is straightforward to see that
−−→
XY = dû, where û is a unit vector that should be perpen-

dicular to both leading vectors t̂1 and t̂2, thus given by û = (t̂1 × t̂2)/|t̂1 × t̂2|.

Second, we may write
−−→
XY by looking at the triangle XY O and using the points on each line

−−→
XY =

−−→
OY −

−−→
OX = (a2 + µt̂2)− (a1 + λt̂1) = a2 − a1 + µt̂2 − λt̂1

for some specific λ and µ.

Finally, equating the expressions for
−−→
XY and applying the scalar product with t̂1 × t̂2 on either

side leads to

d
t̂1 × t̂2

|t̂1 × t̂2|
= a2 − a1 + µt̂2 − λt̂1

⇔ d
(t̂1 × t̂2) · (t̂1 × t̂2)

|t̂1 × t̂2|
= (a2 − a1) · (t̂1 × t̂2) + (µt̂2 − λt̂1) · (t̂1 × t̂2)

⇔ d
|t̂1 × t̂2|2

|t̂1 × t̂2|
= (a2 − a1) · (t̂1 × t̂2)

⇔ d =
(a2 − a1) · (t̂1 × t̂2)

|t̂1 × t̂2|

where we have used the fact that t̂1 and t̂2 are parallel to λt̂1 and µt̂2, respectively, and so

(µt̂2 − λt̂1) · (t̂1 × t̂2) = µt̂2 · (t̂1 × t̂2)− λt̂1 · (t̂1 × t̂2) = 0− 0 = 0.

We may also think about this scalar product as the projection onto û = (t̂1× t̂2)/|t̂1× t̂2|, which gives
the same answer.
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3 Integration

3.1 Absolute values

Consider the expression ∫
−1

x− 1
dx = −

∫
1

x− 1
dx = − log |x− 1|+ C. (1)

On the other hand, we also have, we also have that∫
−1

x− 1
dx =

∫
1

1− x
dx = −

∫
−1

1− x
dx = − log |1− x|+ C. (2)

Naturally, |x− 1| = |1− x|.

3.2 Substitution

Example 3.1 (Problem 10(c) from Section H) We have∫
−2

x2 − 1
dx. (3)

There are two ways of solving this exercise. First, we can factor x2 − 1 = (x + 1)(x − 1) to get, by
partial fractions,∫

−2

x2 − 1
dx =

∫
1

x+ 1
dx+

∫
−1

x− 1
dx = log |x+ 1| − log |1− x|+ C = log

∣∣∣∣1 + x

1− x

∣∣∣∣+ C (4)

Alternatively, one could use the substitution x = tanhu to get∫
−2

x2 − 1
dx = 2

∫
sech2u

1− tanh2 u
du = 2u+ C = 2 tanh−1 x+ C (5)

which only holds for |x| < 1. In this interval, the identity 2 tanh−1 x = log
(

1+x
1−x

)
holds. However,

only the first answer is correct, because the substitution only holds for |x| < 1 and therefore we are
restricting the evaluation of the integral to this specific domain. For all x ∈ R\{−1, 1}, an alternative
way is to write (Figure 1)∫

−2

x2 − 1
dx = log

∣∣∣∣1 + x

1− x

∣∣∣∣+ C =

{
2 tanh−1 x+ C, for |x| < 1

2 coth−1 x+ C, for |x| > 1
(6)

-3 -2 -1 1 2 3

Figure 1: Plot of log
∣∣∣ 1+x
1−x

∣∣∣.
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Example 3.2 (Problem 11(b) from Section H) We are asked to find the indefinite integral

I =

∫
ex√

1− e2x
dx. (7)

Using the substitution u = ex, we get du = exdx and thus

I =

∫
1√

1− u2
du = sin−1(u) + C = sin−1(ex) + C. (8)

However, when using the substitution ex = cos(u), we get du/dx = −ex/ sin(u) and thus∫
ex√

1− e2x
dx =

∫
cos(u)√

1− cos2(u)

dx

du
du (9)

= −
∫

cos(u)

sin(u)

sin(u)

ex
du (10)

= −
∫

1 du = −u+ C = − cos−1(ex) + C. (11)

We then have two values of the integral: I1 = sin−1(ex)+C and I2 = − cos−1(ex)+C. However, since{
y = cos(x)

y = sin(π/2− x)
⇔ sin−1(x) + cos−1(x) =

π

2
(12)

we see that the difference I1 − I2 is a constant (Figure 2), hence they are equivalent answers.

-1.0 -0.8 -0.6 -0.4 -0.2

-1.0

-0.5

0.5

1.0

1.5

Figure 2
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4 Derivation of inverse hyperbolic functions

Hyperbolic sine

Consider the definition of the hyperbolic sine function

sinh(x) =
ex − e−x

2
. (13)

To find the inverse, set y = sinh(x) and solve for x

y =
ex − e−x

2
⇔ ex = y +

√
y2 + 1 ⇔ x = ln(y +

√
y2 + 1). (14)

Therefore, the inverse hyperbolic sine function is

sinh−1(x) = ln(x+
√

x2 + 1). (15)

Hence, the derivative of sinh−1(x) is

d

dx
sinh−1(x) =

1√
x2 + 1

. (16)

Hyperbolic cosine

Consider the definition of the hyperbolic cosine function

cosh(x) =
ex + e−x

2
. (17)

To find the inverse, set y = cosh(x) and solve for x

y =
ex + e−x

2
⇔ e2x − 2yex + 1 = 0. (18)

Solving this quadratic equation for ex, and taking the positive root since ex is always positive, leads
to

ex = y +
√
y2 − 1 ⇔ x = ln(y +

√
y2 − 1). (19)

Therefore, the inverse hyperbolic cosine function is

cosh−1(x) = ln(x+
√
x2 − 1). (20)

Hence, the derivative of cosh−1(x) is

d

dx
cosh−1(x) =

1√
x2 − 1

for x > 1. (21)

Hyperbolic tangent

Consider the definition of the hyperbolic tangent function

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (22)

To find the inverse, set y = tanh(x) and solve for x

y =
ex − e−x

ex + e−x
⇔ e2x − 2yex + 1 = 0. (23)

Solving for ex

ex =
1 + y

1− y
⇔ x =

1

2
ln

(
1 + y

1− y

)
. (24)

Therefore, the inverse hyperbolic tangent function is

tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
. (25)

Hence, the derivative of tanh−1(x) is

d

dx
tanh−1(x) =

1

1− x2
for − 1 < x < 1. (26)
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5 Alternating series estimation

In Problem 5 (a) from Section I, we are asked to consider the following series, known as the Leibniz
formula for π,

π = 4

∞∑
n=1

(−1)n−1

2n− 1
(27)

and estimate how many terms of this series are needed to calculate π to 10 decimal places. Initially,
we could think it would be enough to pick the first term of order n+ 1 such that

4

2(n+ 1)− 1
=

4

2n+ 1
< 10−10 (28)

which holds for n > 2× 1010. However, some of the following terms might still affect the 10th decimal
place. Let’s study the general case.

Consider a series of the form

S =

∞∑
n=1

(−1)n−1an, (29)

where {an} is a sequence of positive terms. We have the following theorems:

Theorem 5.1 If an ≥ 0 for n = 0, 1, . . . and if the sequence (an) decreases monotonically to zero,
then the series

∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · · (30)

converges. Let L be its sum. Moreover, let

Sn := a1 − a2 + a3 − a4 + · · ·+ (−1)n−1an, (31)

Rn := L− Sn, (32)

denote its nth partial sum and remainder, respectively. Then

|Rn| ≤ an+1, (33)

and Rn has the sign (−1)n.

Theorem 5.2 Let ∆an := an − an+1. If, additionally, the sequence (∆an) converges monotonically
to zero, then

an+1

2
< |Rn| <

an
2
. (34)

Let

an =
4

2k − 1
. (35)

From Theorem 5.2, in order to approximate π to 10 decimal places, we need to determine the minimum
k such that

2

2k + 1
< 10−10 <

2

2k − 1
, (36)

which holds for k = 1010. It is important to notice that this only sets a bound to the remainder, and
the word accurate is important here, as setting this k does not necessarily guarantee that the 10th
decimal place is exactly accurate. For a question of this nature, however, an answer based on a bound
of the remainder (via either theorem) would suffice.

Without knowing the number we are approximating, we cannot be sure that a certain level of ac-
curacy determines any particular digit accurately (an example of an arbitrarily long string of zeros or
nines shows this). In numerical analysis, the standard definition of “accurate to k decimal places” is
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that the difference between the true value, x, and the approximate value, x̃ have at least k zeros in its
decimal expansion (regardless of rounding to that decimal place), that is

|x− x̃| ≤ 5× 10−(k+1). (37)

A refined answer that guarantees this would then be k = 2× 1010.

The general question of finding the minimum number of terms needed to calculate π accurate to
exactly k decimal places is significantly harder. To understand this, we will look at a simpler example.

Example 5.1 (Approximating π) Consider again the Leibniz formula for π

π = 4

∞∑
n=1

(−1)n−1

2n− 1
. (38)

Now we ask the following question: What is the minimum number of terms needed to calculate esti-
mate π with exactly equal first k decimal places? Notice that this is a different question!

Let’s consider k = 2 decimal places for example and set an = 4
2n−1 . One way to think about this is to

consider the remainder of the series and simply use Theorem 5.1

|Rn| ≤ an+1 ⇔ |Rn| ≤
4

2n+ 1
≤ 10−2 (39)

which holds for n ≥ 200. Alternatively, Theorem 5.2 yields

an+1

2
< |Rn| <

an
2

⇔ 2

2n+ 1
< |Rn| <

2

2n− 1
(40)

which leads to 99.5 < n < 100.5 and thus n = 100, a refined number. Indeed, either term order satisfies

R200 = 4

∞∑
n=201

(−1)n−1

2n− 1
≃ 0.004999968751 < 10−2 (41)

R100 = 4

∞∑
n=101

(−1)n−1

2n− 1
≃ 0.009999750031 < 10−2 (42)

However, the partial sums give

S200 = 4
200∑
n=1

(−1)n−1

2n− 1
≃ 3.136592685 (43)

S100 = 4

100∑
n=1

(−1)n−1

2n− 1
≃ 3.131592904 (44)

which are not accurate to two decimal places (π ≃ 3.14...). In fact, the minimum value of n that gives
an accuracy to two decimal places was n = 119 (by inspection). Indeed,

S119 = 4

119∑
n=1

(−1)n−1

2n− 1
≃ 3.149995867 (45)

R119 = 4

∞∑
n=120

(−1)n−1

2n− 1
≃ −0.008403213004 (46)

The first 10 minima for “accuracies” k = 0, ..., 9 are, respectively,

(3, 19, 119, 167, 10794, 136121, 1530012, 18660304, 155973051, 1700659132). (47)
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6 Exact differentials

Example 6.1 (Percentage errors) The percentage (or percent) error of a certain quantity of inter-
est is defined as the difference between a measured or experiment value and an accepted or known
value, divided by the known value, multiplied by 100%. As an example, let’s consider the volume of a
cylinder V given as a function of the radius r and height h (see also Problem 5 from Examples Sheet
2). The percentage error is then given by dV/V . The exact differential for V ≡ V (r, h) is given by

dV = Vr dr + Vh dh (48)

where Vr and Vh are the partial derivatives with respect to r and h, respectively. Then, since V = πhr2,
we have that

dV = (2πhr) dr + (πr2) dh. (49)

Finally, dividing by V leads to the percentage error

dV

V
= 2

dr

r
+

dh

h
, (50)

which is the addition of two percentage errors, corresponding to the errors in measuring r and h.
Therefore, the error in a measurement of the volume V can be determined by the independent errors
in measurements of either r or h. For example, if we have a 0.1% error in measuring r, and 0.3% in
measuring h, we have that the percentage error in measuring V is given by

dV

V
= 2× 0.1% + 0.3% = 0.5%. (51)

Naturally, if both errors in measuring r and h are 0%, the error in measuring V is also 0%.

Example 6.2 (Problem 10 from Examples Sheet 2) When showing identities with exact differ-
entials, the most important point is to write everything with respect to the same variables, whether
we’re dealing with the exact differential form, or in terms of partial derivatives. Here, I will present a
detailed solution to Problem 10 by identifying the relevant variables.

First, note that the enthalpy (like entropy) is a state function which describes the equilibrium
states of a system and implies, therefore, an exact differential. In a system like this, everything is a
variable of everything else, so first, note that if U is regarded as a function of p and V (U ≡ U(p, V )),
then S is also a function of p and V (S ≡ S(p, V )), and thus, using the differential form of S, we get

dU = T dS − p dV = T

(
∂S

∂p
dp+

∂S

∂V
dV

)
− p dV =

(
T
∂S

∂p

)
dp+

(
T
∂S

∂V
− p

)
dV (52)

which is a differential form for U . Hence,

∂U

∂p
= T

∂S

∂p
(53)

∂U

∂V
= T

∂S

∂V
− p (54)

from which the second cross-derivatives follow

∂2U

∂V ∂p
=

∂

∂V

(
T
∂S

∂p

)
=

∂T

∂V

∂S

∂p
+ T

∂2S

∂V ∂p
(55)

∂2U

∂p∂V
=

∂

∂p

(
T
∂S

∂V
− p

)
=

∂T

∂p

∂S

∂V
+ T

∂2S

∂p∂V
− 1 (56)

Since ∂2U
∂V ∂p = ∂2U

∂p∂V and ∂2S
∂V ∂p = ∂2S

∂p∂V , it follows that

∂T

∂p

∂S

∂V
− ∂T

∂V

∂S

∂p
= 1. (57)

9



Example 6.3 (Problem 11 from Examples Sheet 2) Similar to Problem 10, a general approach
is to write everything with respect to the same variables. In this case, we want to write dU with
respect to the variables involved in G, which are p and T . Hence, we note that

dU = T dS − p dV = d(ST )− S dt− d(pV ) + V dp. (58)

Rewriting, and using the properties of differentials, we get

d(U + pV − ST ) = V dp− S dT. (59)

Hence, G ≡ U + pV − ST (also known as Gibbs free energy).

Other brief notes

• Problem 9.(f) from Examples Sheet 2. Integrating each differential term with respect to
different variables leads to

f(x, y) =

∫
x

x2 + y2
dy = tan−1

(y
x

)
+ g1(x) (60)

f(x, y) =

∫
−y

x2 + y2
dx = − tan−1

(
x

y

)
+ g2(y) (61)

where g1 and g2 are functions that exclusively depend on x and y, respectively. While the
simplest way to determine f would be to differentiate either of the previous forms, one can also
notice that

tan−1

(
x

y

)
+ tan−1

(y
x

)
= sgn(xy)

π

2
(62)

where sgn is the sign function.

• Problem 12.(ii) from Examples Sheet 2. To see why the hint is true, notice that(
∂ ln p

∂ lnV

)
T

=

(
∂ ln p

∂V
· ∂V

∂ lnV

)
T

=

(
1

p

∂p

∂V
· V

)
T

=
V

p

(
∂p

∂V

)
T

. (63)
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