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Abstract
In order to maintain genomic integrity, DNA replication must be highly coordinated. Dis-
ruptions in this process can cause replication stress which is aberrant in many patholo-
gies including cancer. Despite this, little is known about the mechanisms governing the
temporal regulation of DNA replication initiation, thought to be related to the limited copy
number of firing factors. Here, we present a high (1-kilobase) resolution stochastic model
of Saccharomyces cerevisiae whole-genome replication in which origins compete to
associate with limited firing factors. After developing an algorithm to fit this model to repli-
cation timing data, we validated the model by reproducing experimental inter-origin dis-
tances, origin efficiencies, and replication fork directionality. This suggests the model
accurately simulates the aspects of DNA replication most important for determining its
dynamics. We also use the model to predict measures of DNA replication dynamics
which are yet to be determined experimentally and investigate the potential impacts of
variations in firing factor concentrations on DNA replication.

Author summary
Each time a cell divides, it is essential that its entire genome is copied accurately. The
timing of this DNA replication must be highly coordinated, and disruptions to this pro-
cess are common in many diseases, including cancer. Despite its vital importance, what
controls this coordination is still not fully understood. One idea is that the potential
sites where replication can start must compete with each other for a limited supply of
essential proteins. To explore this, we created a computational model that simulates
whole-genome replication in budding yeast. In our model, potential starting points for
replication compete to bind with a limited number of essential proteins. We show that
the model can reproduce known features of DNA replication dynamics and also predict
aspects of the process that have not yet been measured experimentally. By making the
model as simple as possible while still capturing the key features of DNA replication,
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we identify the factors most important for determining replication timing. Our model
provides a useful tool for investigating how replication is coordinated and may help to
guide future research.

Introduction
To maintain genomic integrity, DNA replication must be tightly controlled to ensure that the
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entire genome is replicated precisely once per cell cycle [1]. In eukaryotes, replication initi-
ates from multiple sites across the genome known as origins of replication. While the assem-
bly and major enzymatic activity of the replisome is conserved across eukaryotes, there is
considerable variability between species as to what genomic features cause loci to act as ori-
gins of replication. In Saccharomyces cerevisiae, origins occur at defined sequences known
as autonomously replicating sequences (ARS) [2]. This, along with their short cell cycle and
simple, well-understood genome [3], makes S. cerevisiae a good model organism for study-
ing DNA replication. Each ARS shares a common ARS consensus sequence (ACS), which is
essential but not sufficient for replication initiation. Local chromatin architecture and nucle-
osome positioning are also thought to influence the locations of origins [4,5]. The locations of
829 S. cerevisiae origins have been mapped and are available in OriDB [6].

As depicted in Fig 1A, DNA replication initiation at origins is divided into two tempo-
rally distinct stages: licensing and firing (reviewed in [7]). Licensing involves loading of the
core of the replicative helicase, the MCM2-7 complex, onto replication origins and occurs

Fig 1. Initiation of DNA replication. A: Mechanism of DNA replication initiation at origins. Licensing occurs dur-
ing G1 at low levels of DDK and CDK activity. Firing occurs during S phase at high levels of DDK and CDK activity.
B: DNA replication initiation as represented in our model. Our model simplifies DNA replication initiation to the S
phase, representing all necessary proteins for origin firing as a single “firing factor”. This factor binds to origins with
different affinities and is subsequently recycled for future use. Created in BioRender.com.

https://doi.org/10.1371/journal.pcbi.1013066.g001
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at low levels of cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) activity
during late-M and G1 phases of the cell cycle. The process begins with the origin recognition
complex (ORC) binding to origins in an ATP-dependent manner. Subsequent recruitment of
Cdc6 and MCM2-7/Cdt1 proteins facilitates the loading of a head-to-head double-hexamer
of the MCM2-7 replicative helicase around the duplex origin DNA. Importantly, in this form,
the MCM2-7 complex is inactive. The resulting pre-replication complex (pre-RC) licences
the origin for replication [8]. The transition from G1 to S phase is accompanied by increased
CDK and DDK activity that facilitates origin firing, which involves conversion of the inac-
tive MCM2-7 double hexamer to two active CMG helicases [9]. Increased CDK activity also
inhibits further licensing, thereby ensuring only one round of replication per cell cycle. The
process of origin firing is driven by the coordinated action of multiple proteins, collectively
referred to as “firing factors”. DDK-mediated phosphorylation of the pre-RC drives recruit-
ment of the Sld7-Sld3 complex and Cdc45 [10]. Away from the DNA, Sld2 binds to GINS
and Pol-𝜖. Phosphorylation of Sld2 and Sld3 by CDK allows both to bind to Dpb11, bring-
ing together their associated proteins at the origin to form the pre-initiation complex (pre-
IC) [11]. Sld2, Sld3, and Dpb11 then depart, leaving the remaining CMG helicase (Cdc45,
MCM2-7, GINS) and pol-𝜖. Subsequent binding of MCM10, along with other replication fac-
tors, results in origin firing by allowing rearrangements of CMG and origin DNA to form the
active replisome [12]. DNA synthesis then progresses bidirectionally from each fired origin,
with dNTPs continuously incorporated into the growing nascent DNA strands. Replication
forks continue advancing until they are terminated by either converging with opposing forks
or reaching the ends of chromosomes [13].

The essential firing factors Sld2, Sld3, Cdc45, Dpb11, and the DDK subunit Dbf4 have all
been found to be in low abundance in S. cerevisiae. Overexpression of these leads to prema-
ture firing of late origins [14,15]. An origin’s affinity for firing factors is influenced by multi-
ple factors including chromatin accessibility and nuclear localisation [12,16,17]. Stochastic
firing means that, whilst the replication timing profile is reproducible at a population level,
the set of origins that fire and their precise firing times differ between cells and cell cycles
[18–20]. Therefore, single-molecule methods such as DNA fibre analysis are needed to study
details of DNA replication which are smoothed out in population averaging obtained from
bulk experiments [21,22]. However, these techniques tend to have low throughput, and while
recent long-read sequencing [23–25] and optical mapping [19] techniques have expanded the
toolkit to study DNA replication, mathematical models are a valuable complement to these
techniques to study DNA replication dynamics.

Previous work on mathematical modelling of DNA replication in S. cerevisiae has
employed analytical models based on the Kolmogorov-Johnson-Mehl-Avrami equation to
derive local, time-dependent firing rates, capturing genome-wide stochastic initiation pat-
terns [26,27]. Deterministic models have also used origin positions and fork migration rates
to predict replication timing profiles [28], while other studies have highlighted how stochastic
origin usage enhances replication robustness [29]. Additionally, other models characterised
origin firing on chromosome 6 by defining each origin’s competence, reflecting firing prob-
ability through pre-RC assembly, and a Gaussian-distributed activation time [30,31]. Whilst
fast to compute, none of these modelling approaches includes firing factors. Rate-limiting
firing factors were incorporated into a stochastic model by [32] in which firing factors were
loaded into the system gradually and traveled with the replication forks, being released upon
fork termination. While this is thought to be the case for Cdc45 [15], it does not account
for other firing factors. Stochastically varying fork speeds were incorporated into the model
by [33]. However, this contrasts with data from [25] which showed a consistent fork speed
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across the budding yeast genome. A Bayesian algorithm was used by [34] to infer the ori-
gin firing time distributions of S. cerevisiae chromosome 10 from Okazaki fragment analysis.
However, this model only considered three consecutive origins at a time and used “replicated
base pairs” rather than conventional time units. A more complex model developed by [35]
attempted to describe all of the core processes governing DNA replication initiation in S. cere-
visiae. However, the challenge of incorporating every relevant factor restricted their model to
capturing the kinetics of early, but not late, firing origin.

Whilst a broad range of different measures of DNA replication dynamics have been inves-
tigated across the myriad of existing models, differences in assumptions and generalisations
between these models make it difficult to compare their findings. Furthermore, many rely on
complex, rigid mathematical equations, making them difficult to interpret and modify. To
gain a better understanding of the core mechanisms governing DNA replication dynamics,
there is therefore still a need for a DNA replication model which is as simple as possible whilst
still capturing the main features and from which many aspects of DNA replication dynam-
ics can be extracted. Here, we address this by presenting a stochastic model for S. cerevisiae
whole-genome DNA replication in which origins compete to associate with limited firing fac-
tors, needed for initiation, which then recycle to be used again (Fig 1B) [14]. We constructed
this model using Beacon Calculus, a process algebra designed for modelling biological sys-
tems [36]. The inherent stochasticity of Beacon Calculus makes it well suited to modelling
DNA replication and its simplicity makes it intuitive, straightforward to interpret, and eas-
ily modifiable. The detailed output of Beacon Calculus simulations allows DNA replication to
be investigated at a single-molecule level and enables multiple features of its dynamics to be
extracted from the same output for more comprehensive insights.

Materials and methods
The simulation

Origin positions. We obtained the positions of origins from OriDB [6], which catalogues
829 origins, classifying them as ‘Confirmed’ (410), ‘Likely’ (216), or ‘Dubious’ (203). In our
model, we only include ‘Confirmed’ origins (verified by ARS assays and/or 2D gel analysis)
and ‘Likely’ origins (identified in two or more microarray studies). We excluded ‘Dubious’
origins, as these were identified by only a single microarray study.

Model formulation. We created a stochastic model for S. cerevisiae whole-genome repli-
cation in which origins compete to associate with limited firing factors, needed for activation,
which then recycle to be used again (Fig 1B). To construct our model, we used Beacon Calcu-
lus, a process algebra designed for modelling biological systems [36] (S1 Fig). In Beacon Cal-
culus, each component of the system is represented as a process capable of performing one or
more actions. The Beacon Calculus model is simulated according to a modified Gillespie algo-
rithm, with each action being associated with a rate that represents the parameter of an expo-
nential distribution. This makes models written in the Beacon Calculus inherently stochastic
and therefore well-suited to modelling DNA replication.

In our model, each origin is characterised by four parameters: its chromosome, [ch];
position on the chromosome [i]; chromosome length [length]; and the rate at which it
associates with firing factors, [fire]. The model was formulated such that chromosomal
positions had a spatial resolution of one kilobase (kb). Once an origin associates with a fir-
ing factor, it initiates two replication forks which move bidirectionally, replicating DNA at
a constant rate of 1.4 kb/min [33,37]. Forks terminate when they reach either the end of the
chromosome or an oncoming replication fork [13]. In our model, an origin is passively repli-
cated and therefore removed from the system when a fork moves through its position before
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it can fire. After associating with an origin, firing factors are temporarily inactive while they
are recycled for reuse. We assume that firing factors are available immediately following the
transition from G1 to S phase [9]. Therefore, all firing factors are present from the beginning
of the simulation.

Each simulation of the model can be interpreted as a single S-phase within an individual
cell. Given the stochastic nature of the model, each simulation yields variable results, simi-
lar to the variability observed in individual cells [18]. To capture a representative overview
of DNA replication dynamics at the population level, unless otherwise stated, we based our
analysis on results averaged from 500 simulations of each model.

Fitting the origin firing rates. Themodel was fitted to experimental replication tim-
ing data iteratively through cycles of model prediction, comparing the predicted and exper-
imental replication timings, and adjusting the firing rate to better fit the replication timing
data. The replication timing data used was sourced from [38] who used deep sequencing and
fluorescence-activated cell sorting (FACS) to determine population-averaged DNA replica-
tion timings in asynchronous diploid S. cerevisiae. To facilitate comparison with the simulated
replication timings from our model, linear interpolation was applied to estimate replication
timings for each genomic locus with 1-kb resolution. For iteration n and origin i, we denote
the origin’s firing rate as fi,n. For the initial iteration n = 0, the firing rate at each origin was
calculated using the experimentally determined replication timing at that origin [38], Ti, and
the number of firing factors in the model, F, according to

fi,0 =
1
F
1
Ti

(1)

For subsequent iterations, n + 1, new firing rates at each origin, fi,n+1, were calculated based
on the previous firing rate, fi,n, and a power (𝛼) of the ratio of its simulated replication timing,
T̃i,n, to its experimental replication timing:

fi,n+1 = fi,n (
T̃i,n

Ti
)
𝛼

(2)

The parameter 𝛼 was set to 1.2 to achieve efficient fitting by balancing faster fitting times
against the risk of taking large steps that cause instability. While there are alternative fitting
methods for unreplicated DNA fractions as discussed in [26,39,40], this method is sufficient
to capture the prevailing firing rate distribution for given replication timing profiles in S.
cerevisiae.

Total error. The total error in replication timing was quantified using the Mean Abso-
lute Error (MAE), which was calculated as the mean absolute difference between our sim-
ulated replication timing and the experimental data from [38] for each genomic locus with
1-kb resolution. The model was fit for 15 iterations, chosen because the MAE’s rate of change
approached zero beyond this point indicating that further iterations would not substantially
improve the fit. The model with the lowest MAE over the fitting iterations was selected as the
final model used for the results in this paper.

Model configuration. The essential firing factor identified to have the lowest copy num-
ber is Dpb11, estimated at 200 [15]. For simplicity, we assume that Dpb11 is rate-limiting and
therefore set F =200. While the recycling rate is more difficult to estimate, this parameter was
set conservatively to 0.05 such that the expected recycling time would be approximately one-
third of S phase. While the model’s robustness meant that it was also able to be fitted using a
range of different combinations of firing factor copy numbers and recycling rates, all analysis
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in this study was based on the fitted model configured with F =200 and a recycling rate of 0.05
(Table 1).

Software and processing
Models were simulated using Beacon Calculus version 1.1.0 (the latest available at the time
of writing) https://github.com/MBoemo/bcs, [36]. Models, fitting algorithms, and analysis
scripts are available at https://github.com/rb2065/S_cerevisiae_DNA_rep_model.

Results
Model convergence
The replication timing predicted by the model converged with the replication timing data
from [38] over successive iterations to produce a close match (Fig 2). Fig 2A shows how the
model’s prediction of replication timing compares to data when using the selected model with
the lowest MAE against the data over 15 iterations. Fig 2B demonstrates how our initial pre-
dictions of origin firing rates were improved upon by successive fitting iterations. As the iter-
ations progressed, we observed the MAE converging to a minimum value of 1.32 minutes by
the 15th iteration (as shown in Fig 2C). The root mean squared error (RMSE) was 1.81 min-
utes and the R2 value obtained from comparing the experimentally determined and simulated
replication timings was 0.94.

Length of S phase. In our model, S phase duration is defined by the time required, from
the beginning of the simulation, to replicate the entire genome. The mean simulated length of
S phase was 93.7 ± 10.8 minutes (Fig 3B) which aligns with time course data from [38]. The
low variation in simulated S phase duration shows that, despite its inherent stochasticity, our
model consistently achieves DNA replication completion within a biologically realistic time-
frame. Moreover, consistent with experimental results, our model indicates that the majority
of DNA replication occurs within the first 60 minutes of S phase (Fig 3A).

Model validation
To validate the model, features of DNA replication dynamics were calculated from the out-
put of 500 model simulations and compared to experimental data that was not used to fit the
model.

Inter-origin distances. Inter-origin distance (IOD) is defined as the length of DNA
between successive origins which fire during the same cell cycle. The mean IOD determined
from the model simulation was 57.4 ± 30.9 kb (Fig 3C) and was relatively consistent across
chromosomes. This aligns closely with the mean IOD of 55.6 ± 30.3 kb which has been pre-
viously established by DNA combing experiments [41].

Table 1. Summary of model parameters. Summary of the main parameters used in the model and the rationale for
their chosen values.
Model Parameter Value Rationale
Fork speed (kb/min) 1.4 Determined experimentally for chromosome 6 by [37] and

found to be optimum for modelling by [33].
Number of firing factors 200 The copy number of Dpb11 [15].
Recycling rate 0.05 Selected to take approximately one third of S phase.
Number of origins 626 Locations of ‘confirmed’ and ‘likely’ origins from the OriDB

[6].

https://doi.org/10.1371/journal.pcbi.1013066.t001
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Fig 2. Fitting the model to replication timing data. A: Replication timing profiles from simulations using the fitted AQ1model (blue) and experimental data from
[38] (orange). B: Replication timing profile of chromosome 1 over the fitting, highlighting the incremental convergence towards the real timing profile. Model
fitting iterations are represented as a colour gradient from light green to blue. Experimental data (orange) is also shown for comparison. C: The change in Mean
Absolute Error (MAE) in replication timing over the fitting iterations.

https://doi.org/10.1371/journal.pcbi.1013066.g002

Origin efficiency. Origin efficiencies were calculated as the percentage of simulations in
which each origin fired. As expected, more efficient origins tended to have earlier replication
timings. The efficiencies of 433 of the 626 origins included our model have been previously
determined experimentally from Okazaki fragment analysis [42]. The mean absolute differ-
ence between the experimental and simulated origin efficiencies was 18.7% ± 14%. The mean
signed difference of 6.2% ± 22% is close to zero and this was relatively consistent across all
chromosomes (Fig 3D). This indicates that our model’s estimation of origin efficiencies is not
markedly skewed towards either overestimation or underestimation. The large variation in
these differences between simulated and experimental origin efficiencies is comparable to the
variation observed when comparing efficiencies derived from Okazaki fragment analysis and
replication timing data [38,42]. This suggests that the discrepancies between our model and
experimental data are within the expected range of variability.

Replication fork directionality. Replication fork directionality (RFD) is a measure of the
proportion of cell cycles in which a particular position is replicated by either the leftward or
rightward moving fork. RFD ranges from -1 to 1 where a RFD of -1 corresponds to positions
which are always replicated by leftward moving replication forks whilst positions exclusively
replicated by rightward moving replication forks have a RFD of 1. [43] have used Okazaki
fragment sequencing (OK-seq) [44] to determine the RFD for the entire S. cerevisiae genome.
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Fig 3. Comparing simulated and experimental replication dynamics. A: Length of unreplicated DNA over time. B:
Distribution of the total time taken to complete DNA replication (lengths of S phase). C: Distribution of inter-origin dis-
tances (IODs). The mean (red) and standard deviation (orange) are shown. D: Box plots of the signed difference between
simulated and experimentally determined origin efficiency across each Chromosome. Efficiency differences for individ-
ual origins are shown as scatter points (blue). E: Simulated (blue) and experimentally determined (orange) replication
fork drectionality (RFD) for chromosome 2. Positions of origins are shown as red points. RFD represents the proportion
leftward and rightward moving forks which replicate each position, ranging from -1 (exclusively leftward moving forks)
to 1 (exclusively rightward forks). All plots were derived from 500 simulation a version of the model in which F =200 and
the recycling rate was 0.05.

https://doi.org/10.1371/journal.pcbi.1013066.g003
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As demonstrated for chromosome 2 in Fig 3E, the simulated RFD from our model was in rel-
atively close agreement with this experimentally determined RFD. The mean percentage abso-
lute difference between these experimentally determined RFDs and those determined by our
model was 19.9% ± 16.0%. This difference can be partly attributed to the increased noise in
the experimental RFD.

Model predictions
Our model is also capable of predicting various aspects of DNA replication that have not yet
been fully explored experimentally. While this means these predictions cannot currently be
verified by experiments, they offer valuable insights into the dynamics of DNA replication and
suggest directions for future research.

Active replication forks. Our model predicts the mean number of replication forks which
are active at each time point over the simulated S phase (Fig 4A). This reached a maximum of
200 active replication forks at 22 minutes into S phase.

Distribution of origin firing times. From our model, the distribution of firing times for
each origin can be extracted. Using a subset of chromosome 2 origins as an example, Fig 4B
illustrates how firing time distributions correspond to origin efficiencies. This is shown for all
chromosome 2 origins in S2 Fig. More efficient origins do not necessarily fire earlier or have
less varied firing time distributions. Given the limited components in our minimal model, this
suggests positioning and context among other origins are more important than efficiency in
determining firing time which is consistent with the discussion in [45]. Additionally, many
origins exhibited weakly bimodal firing time distributions, which also did not correlate with
their efficiencies.

Replicons. Our model’s capacity to track individual replication forks also enables the
investigation of replicons, defined as the segment of DNA replicated from a single origin.
Replicon length is an important metric for investigating DNA replication dynamics because,
as well as the efficiency of the origin in question, it is also influenced by its proximity to
neighboring origins and their respective efficiencies. From our model, we calculated the aver-
age replicon length for each origin. Fig 4C exemplifies this for chromosome 2. As expected,
there was a strong positive correlation between an origin’s efficiency and its average repli-
con length. Although [46] have used the single molecule technique Replicon-seq to study
replicons in S. cerevisiae experimentally, their focus on early S phase and the potential bias
of Replicon-seq towards detecting shorter replicons limits its use for validating our model.
Furthermore, by determining replicon lengths beyond just the early stages of replication, our
model provides a broader overview which captures the dynamics of both early and late firing
origins.

Variation in replication timing. Our model enables us to predict variability in replica-
tion timing, as shown for chromosome 2 in Fig 4D. Notably, we observed local maxima in
variability at the boundaries of origin clusters. The average standard deviation for replication
timings at the origins stood at 16.82 ± 2.36 minutes whereas the average standard deviation
for replication timings across the entire genome was slightly lower, at 15.50 ± 2.14 minutes.

Influence of firing factors on DNA replication
Impact of firing factor availability. In our model, the rate at which origins fire is deter-

mined by the interplay between three factors: the affinity of individual origins for firing fac-
tors, the abundance of “free” firing factors able to associate with origins, and the number
of available origins yet to fire or be passively replicated. This dynamic, averaged over 500
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Fig 4. Predictions of DNA replication dynamics. A:The number of active replication forks over time. These plots were
derived from a version of the model which used F = 200 and a recycling rate of 0.05. B: Kernel density plot showing the
distribution of firing times for origin on chromosome 2. Each line represents a separate origin, with the shade colour gradient
from blue to red reflecting its efficiency. For improved visualisation, only 1 in 5 origins, ordered by efficiency, are shown. C:
Chromosome 2 replication dynamics. Simulated and experimental replication timing profiles are shown in blue and orange
respectively. Origins are shown as circles with the shade of blue reflecting their efficiencies. The average replicon length of
each origin is shown in red. D: The standard deviation of simulated replication timing for each kb on chromosome 2. The
positions of origins are shown in red. All plots were derived from 500 simulation a version of the model in which F = 200 and
the recycling rate was 0.05.

https://doi.org/10.1371/journal.pcbi.1013066.g004
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simulations, is illustrated in Fig 5A. The simulation begins with maximal availability of fir-
ing factors and origins, causing high initial origin firing. This initial swell of activity reduces
the pool of both free firing factors and available origins, subsequently leading to a decline in
the rate of origin firing. A minimum of 122.84 free firing factors, reached at 21 minutes into S
phase, is closely followed by the peak in replication fork activity (Fig 4A). As the simulation
progresses, firing factors are recycled back into the available pool. This increases the proba-
bility of some of the few remaining origins fire, thereby facilitating the timely completion of
genome replication within the duration of the S phase. Of the 626 origins included our model,
a mean of only 206.43 ± 6.72 origins fire per simulation.

Fig 5. Influence of firing factor availability on origin firing dynamics. A:The percentage of active firing factors
(dark blue), fired origins (orange), origins available to fire (red) and rate of origin firing over time (light blue). Here,
available origins refers to origins which have not already either fired or been passively replicated. For this plot, the
time has been cropped at the mean simulation length. B: Mean Absolute Error (MAE) in replication timing with dif-
ferent numbers of firing factors. Data points from simulations (red) have been fit to a fifth-degree polynomial (blue).
C: Simulated replication timing profiles for chromosome 2 from models using F = 100 (light blue), F = 200 (red),
and F = 400 (dark blue). In all models, origin firing fates were fitted using F = 200. The experimentally determined
replication timing profile is also shown for comparison (orange).

https://doi.org/10.1371/journal.pcbi.1013066.g005
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Altering the number of firing factors. We explored the influence of firing factor concen-
tration variations on DNA replication dynamics by manipulating the copy number of firing
factors introduced into the model. To isolate the effects of firing factor concentration changes,
we maintained the constant recycling rate of 0.05 and kept the origin firing rates which were
derived from fitting the baseline model configuration in which F = 200. We quantitatively
assessed the impact of altering the firing factor copy numbers by computing the MAE in repli-
cation timing across a range of values from F = 25 to F = 800. This data was subsequently fitted
a fifth-degree polynomial (Fig 5B). As expected, increasing the number of firing factors led to
earlier replication timing and a higher number of origins firing, whereas decreasing the num-
ber of firing factors produced the opposite effect. However, the shape of the replication tim-
ing curve remained remarkably robust despite this severe perturbation. This is illustrated for
chromosome 2 in Fig 5C.

As shown in Fig 5B, successive increases in firing factor copy numbers causes diminish-
ing increases in error as they become less limiting and therefore their availability has less
influence on origin firing dynamics. Conversely, reducing the copy number of firing factors
incrementally increases the error. This is because, in our model, firing factors are essential for
initiating origin firing; therefore, a minimum number is required to ensure sufficient origins
can activate to complete DNA replication within the expected timeframe.

Discussion
Despite being central to maintaining genetic integrity, the mechanisms underlying the tem-
poral regulation of DNA replication remain poorly understood. Since DNA replication
is a stochastic process and therefore differs between cells, valuable information is lost in
bulk experiments which use population averages [18,19]. Whilst the development of high-
throughput, single-molecule experimental techniques have advanced our ability to investigate
DNA replication, the complex cellular environment means it is still difficult to identify the
features most important for determining its dynamics [21,22,25,46–48].

Here, we created a stochastic model for S. cerevisiae whole-genome replication from first
principles. By making the model as simple as possible whilst still able to reproduce experi-
mentally determined measures of DNA replication dynamics, we highlight the features which
are most important for determining these dynamics. The ability to rapidly conduct thou-
sands of simulations of our model offers a scale of repetition far surpassing what experimen-
tal methods can feasibly achieve. Moreover, conventional experimental techniques typically
focus on only a few aspects of DNA replication dynamics. In contrast, our model allows
numerous features to be calculated from a single output, providing a more comprehensive
insight. Although our model depends on replication timing data from [38] to fit origin fir-
ing rates, its ability to closely reproduce independent, experimentally determined replication
dynamics suggests that it effectively captures broader aspects of replication beyond the dataset
used for fitting.

In simplifying the model, we used firing factors, recycling rates, and origin firing rates
to combine many complex features affecting DNA replication into a few basic concepts. In
our model, firing factors represent the completed pre-IC. The number of available firing fac-
tors represents any protein or protein complex essential for forming the pre-IC that may be
in limiting abundance at any given time during S phase. For instance, this may represent the
availability of the complex formed during pre-IC assembly between Sld2, Sld3, and Dpb11
which are all present in limited abundance [15]. This complex is released before origin firing
and therefore does not move with the replication forks [11,12]. Based on this, in our model,
firing factor recycling is independent of replication fork termination and, instead, recycling
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begins at a set rate immediately following firing. Of the essential firing factors thought to be
in limited abundance, only Cdc45 is known to travel with replication forks. Over-expression
of Cdc45 alone is insufficient to cause premature firing of late origins, suggesting it is not
solely responsible for limiting origin firing [14]. Despite this, the DNA replication model
developed by [32] employed a fork-dependent mechanism for recycling firing factors. This
assumes that the firing factors travel with the replication forks, only becoming available again
once the forks terminate. However, the ability of our model to be fitted and validated without
fork-dependent recycling suggests that it is not strictly necessary to model DNA replication
dynamics. In our model, recycling rates represent a generic time-lag which encapsulates any
processes which may delay the ability of firing factors to activate new origins following their
release from a fired origin. This could include the time required for diffusion and the assem-
bly of protein complexes required to construct the replisome. However, by not accounting
for differences in the time taken for firing factors to diffuse to different origins, our model
does not incorporate the effects of spatial proximity, where origins located near recently fired
origins may have increased firing probabilities due to the release of firing factors.

Based on the assumption of a rapid transition from G1 to S phase, in our model, all firing
factors are available from the beginning of the simulation. However, although the transition
from G1 to S-phase is accompanied by a switch-like increase in CDK and DDK activity, it is
possible that the subsequent activation of firing factors required for initiating DNA replica-
tion is more gradual [9]. This would be expected to increase the competition for firing factors
at the beginning of S phase, thereby decreasing the initial rate of origin firing.

Whilst the number of firing factors and their recycling rates affect the firing probability of
all origins uniformly, individual differences in firing probability arise from each origin’s spe-
cific assigned firing rate. An origin’s firing rate encompasses anything which may impact its
ability to associate with firing factors, including sequence composition and local chromatin
structure. There is evidence suggesting that the probabilities of origins firing are dynamically
regulated throughout S phase by mechanisms such as cooperative firing, the formation and
dissolution of replication factories, and changes in chromatin environments [16,17,49–52].
However, our model simplifies these dynamics by assuming constant origin firing rates for the
entirety of S phase. Furthermore, origin firing rates, recycling rates, and the maximum num-
ber of firing factors remain constant between simulations, implying no variability in these
parameters between cells or across cell cycles. The ability of our model to reproduce observed
DNA replication dynamics without accounting for these variables suggests that such changes
are less central to determining the overall dynamics and may instead fine-tune DNA replica-
tion. This fine-tuning could enhance replication robustness by allowing origin firing rates to
respond to system and environmental changes [53].

Our model also assumes a constant rate of fork movement in order to be consistent with
findings from [54] and [25] which both demonstrated a remarkable uniformity in replica-
tion fork speeds across the S. cerevisiae genome. [25] also observed a slight acceleration of
fork speeds during the S phase and identified specific genomic regions, such as centromeres,
telomeres, and tRNA genes, where replication forks progress more slowly, likely due to
increased pausing and stalling at replication barriers [55,56]. Neither increasing fork speeds
nor fork stalling are included in our model. Despite these simplifications, our model’s ability
to successfully reproduce experimentally determined measures of S. cerevisiae DNA repli-
cation suggests that such features may not be central to determining the overall dynamics of
DNA replication in S. cerevisiae. Whilst changing fork speeds and fork stalling could also eas-
ily be incorporated into our model, the constant rate of fork movement also limits the max-
imum gradient of the DNA replication timing profile which helps to avoid over fitting. This
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constraint may partly explain the poorer fit of the simulated replication timing to experi-
mental data for chromosome 1, which exhibits steep gradients in replication timing (Fig 2A).
Although slower fork speeds could potentially improve the fit, such speeds are not supported
by experimental data.

Additionally, our model restricts the initiation of DNA replication to specific sites on the
genome, sourced from the OriDB [6], and does not capture all potential origins, such as every
origin in the rDNA array on chromosome 12. Notably, our model does not include every
potential origin in the rDNA array on chromosome 12, which consists of approximately 150
tandem repeats, each harbouring a potential origin [57]. This omission may partly account for
the slightly higher error observed in our origin efficiency estimates for chromosome 12 rela-
tive to experimental data (Fig 3D). Whilst the origins we included are sufficient to reproduce
observed DNA replication dynamics, evidence suggests that DNA replication initiation in S.
cerevisiae is more flexible [24,58], and it is possible that, similar to other eukaryotes, any site
could act as an origin. However, some may have much lower probabilities of firing, thereby
serving dormant origins which provide a backup mechanism in case of perturbations [59].

Our model’s capacity to predict aspects of DNA replication dynamics which have not
yet been determined experimentally offers novel insights and directs future research. For
instance, by calculating the number of active replication forks throughout S phase, our model
could highlight periods when cells may be particularly susceptible to replication stress or
damage. Our model also predicts a non-trivial relationship between the average replication
time and the standard deviation of replication time. The inability of our model to infer fir-
ing time distributions directly from efficiencies underscores the complexity of origin firing
dynamics and suggests that multiple interrelated factors influence these distributions such as
the proximity of origins to other origins and their respective efficiencies. Our model also pre-
dicted that replication timing curves do not particularly change shape under overexpression
and underexpression of firing factors. Although, notably, our model does not consider dNTP
availability, which is likely to become limiting following increased firing due to increased fir-
ing factor availability. In reality, this would trigger the S phase checkpoint to stabilise replica-
tion forks and prevent further origin firing until dNTP levels are restored [60]. Therefore, in
this case, increasing the number of firing factors can be interpreted as increasing the overall
replication capacity of the cell more generally.

Although our model can be compared to several published approaches, direct one-to-one
performance comparisons are challenging due to differences in metrics and assumptions such
as whether and how firing rates depend on time or space. Some studies such as [31] focus on
the median firing time, rather than replication time, of origins, making side-by-side compar-
isons with our results less straightforward. Others employ time-dependent origin firing rates
[32,61,62], which differ from our model’s approach of combining time-independent firing
rates with dynamic firing-factor availability. Meanwhile, certain kinetic or neural-network-
based models explicitly incorporate a time-dependent probability of origin firing that matches
well with our notion that the “effective” initiation rate varies as forks consume a limiting pool
of factors, even though our baseline firing rates are time-independent [63]. Furthermore,
some authors refine their fits by tracking the width of firing-time distributions or by calculat-
ing Pearson correlations of mean replication timing profiles. Although we have not replicated
these specific metrics, our model aligns well with experimental data under simpler assump-
tions, such as fork-independent recycling of firing factors and unrestricted origin firing time
distributions. Together, these points clarify that our overall framework is broadly in line with
previous work while differing primarily in how we handle the time dependence of initiation
and the precise fitting metrics used.
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Conclusion
The simplicity of our model not only identifies the minimal components necessary to recon-
struct replication timing profiles, but also shows how the shape of the replication timing curve
remains remarkably robust to perturbations such as changes in the number of firing factors,
which represent alterations in the global replication capacity of the cell. Our simulation-based
model offers substantial advantages in terms of intuitiveness and design flexibility, position-
ing it as a valuable tool for exploring how various disruptions might influence the dynamics of
DNA replication. Given the high conservation of DNA replication mechanisms across species
[64], the insights gained from this model are likely generalisable to other eukaryotes.

Supporting information
S1 Fig. The Beacon calculus model. Beacon Calculus code used for the model. Processes and
comments are highlighted in pink and green respectively. The code includes process defini-
tions for firing factors, FF, origins, ORI, and replication forks, FR and FL. Comments within
the code are indicated by “\\”. Actions are enclosed within “{}” and are defined as ordered
pairs, specifying the action followed by the rate at which it occurs. Handshake communica-
tions are denoted by @factor! for sending and @factor? for receiving on the factor
channel. Beacon actions are represented by ch! for sending, ~ch? for checking, and ch?
for receiving, all on the ch channel. The values within “[]” following handshake or beacon
are transmitted. The code syntax includes “.” for sequential statements, “|” for parallel state-
ments, and “+” for making exclusive choices. Condition gates are represented by “->”. All ori-
gin and firing factor processes are initiated from the beginning of the simulation. However,
this has been omitted from this representation for conciseness.
(PDF)

S2 Fig. Chromosome 2 origin firing time distributions. Kernel density plot showing the
distributions of origin firing times for all origins on chromosome 2. Each line represents a
separate origin, with the colour gradient from blue to red reflecting its efficiency.
(PDF)
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