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DNA replication in humans requires precise regulation
to ensure accurate genome duplication and maintain
genome integrity. A key indicator of this regulation
is replication timing, which reflects the interplay be-
tween origin firing and fork dynamics. We present a
high-resolution (1-kilobase) mathematical model that
maps firing rate distributions to replication timing pro-
files across various cell lines, validated using Repli-
seq data. The model effectively captures genome-
wide replication patterns while identifying local dis-
crepancies. Notably, regions where the model and
data diverge often overlap with fragile sites and long
genes, highlighting the influence of genomic architec-
ture on replication dynamics. Conversely, regions of
high concordance are associated with open chromatin
and active promoters, where elevated firing rates fa-
cilitate timely fork progression and reduce replication
stress. By establishing these correlations, our model
provides a valuable framework for exploring the struc-
tural interplay between replication timing, transcrip-
tion, and chromatin organisation, offering new insights
into mechanisms underlying replication stress and its
implications for genome stability and disease.
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Introduction

Accurate DNA replication is essential for faithfully duplicat-
ing genetic information, ensuring its preservation for future
generations (Gefter, 1975). In humans, replication occurs
during S phase when multiple discrete chromosomal sites,
termed origins of replication (Leonard and Méchali, 2013),
“fire” to initiate bidirectional replication forks—molecular
machines that traverse the chromosome and replicate DNA
(Waga and Stillman, 1998). These forks move in opposite
directions, progressing until they encounter another fork,
reach a chromosome end (Figure 1a), or face an obstacle
(e.g., a bound protein or transcription complex; Mirkin and
Mirkin (2007)). Intriguingly, each origin fires stochastically
so firing sites and times differ from cell to cell. Despite this
apparent randomness, consistent trends emerge so that
different cell types have characteristic firing profiles (Rhind
and Gilbert, 2013).

Replication timing is a critical marker of replication fidelity,
reflecting the time it takes for a specific locus either to fire (if
an origin) or to be passively replicated by an incoming fork.

These timing profiles are closely associated with various
chromatin structures (Marchal et al., 2019), as well as gene
expression (Miller and Nieduszynski, 2017) and replication
stresses (Briu et al., 2021). Furthermore, timing is linked
to genetic variation (Koren et al., 2014) and cancer (where
late or delayed replication often correlates with increased
genomic instability; Woo and Li (2012)). Of particular in-
terest are fragile sites, regions that are especially vulner-
able to breakage due to replication stress, and are often
found in late-replicating regions (Sinai and Kerem, 2018).
These sites, and the long genes found within them, are
often hotspots for the chromosomal rearrangements and
deletions that arise in cancers and other genetic diseases
(Smith et al., 2006).

Replication, transcription, and chromatin organisation are
also intricately inter-connected, with each influencing the
other (Sequeira-Mendes et al., 2009; Ehrenhofer-Murray,
2004; Turner and Woodworth, 2001). In particular, chro-
matin remodelling regulates the accessibility of regulatory
factors, influencing both gene expression and replication.
Open chromatin is strongly linked to transcriptional activ-
ity and plays a crucial role in replication timing (Guilbaud
et al., 2011; Audit et al., 2009).

Although associations between genomic features are well-
established, identifying site-specific or context-dependent
differences remains a challenge. Experimental approaches
often struggle to isolate individual variables, limiting our
ability to disentangle the interplay between replication and
other processes. To address these gaps, we develop a
stochastic model that maps origin firing rates to replica-
tion timing, capturing variability across cell populations.
By integrating data from RNA-seq (Marguerat and Bah-
ler, 2010), ChIP-seq (Pepke et al., 2009), GRO-seq (Lopes
et al., 2017), and a database of fragile sites (HumCFS; Ku-
mar et al. (2019)), we provide a framework to explore how
discrepancies between the model’s predictions and exper-
imental data may reflect signatures of transcriptional activ-
ity, chromatin openness, and genomic fragility.

We begin our analysis with a fundamental inquiry: how ac-
curately can a kinetic model of replication predict genome-
wide timing? Our model acts as a null hypothesis, rep-
resenting how replication should occur in the absence of
perturbation from genomic features. The central aim is to
identify loci where the model’s predictions diverge from ex-
perimental observations, highlighting regions that may ex-
perience replication stress or other anomalies. By deriving
a closed formula for the expected time of replication at each

Berkemeier etal. | bioRyiv | December 19,2024 | 1-12


https://orcid.org/0000-0001-9850-3666
https://orcid.org/0000-0002-6639-188X
https://orcid.org/0000-0002-0326-8200
mailto:fp409@cam.ac.uk
mailto:mb915@cam.ac.uk
https://doi.org/10.1101/2024.11.25.625090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.25.625090; this version posted January 3, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

(a) DNA replication kinetics during S phase (b) Replication dynamics
ORI 1 ORI 2 ORI 3 i
5 g /ﬂ\\\ // ' ”\\
el / /
1 i / \A/ /’\// \\\
ORI 3
LW g W W ) (early)
T AT NTD
[ (]
8 Qa7 a7 LW Wi W W £
s \TOT T e Vg Wig, Wg, W S
®
)
LIV W (W ) ! (Vg Wi W W W W N g ﬁggf
AT T DT DT DT 1 (W O O O O N O <
(]
W g Vg g g N g NV S S g g [N g 1 g VI Lg% L 1 Lg% L 1 g g T g =
Y UDI DI DI DI DI DD AT DT T T T DT DT DTG DT

G2

Chromosome position

Figure 1. A kinetic model of DNA replication.
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(a) Replication initiates at specific origins that are fully licensed by the end of G1 phase. During S phase, replication forks progress bidirectionally from origins, passively
replicating DNA until they merge with forks from adjacent origins or reach chromosome ends to complete replication and enter G2. In this example, three origins (ORIs 1,
2, and 3) fire at different times, with nascent DNA strands shown in red. At the end of replication, two identical copies of the original template are formed. (b) lllustration
of the expected inverse but non-trivial correlation between firing rates (top) and replication timing (bottom, with an inverted y-axis). In a model where the firing time of each
origin is an exponentially distributed random variable, the firing rate is the parameter of this distribution and tends to decrease as replication timing increases, indicating that
regions with higher firing rates replicate earlier in S phase. Replication timing, measured by Repli-seq, shows the average replication time across a cell population, with peaks
corresponding to potential origins. ORI 2 is in a late-replicating region, while ORI 3 replicates earlier, as indicated by their relative positions on the timing curve.

genomic site, we establish a solid mathematical framework
to support our computational simulations.

Our workflow is simple: using only timing data as input,
along with minimal genomic parameters such as potential
origin locations, the model determines firing rates and pre-
dicts timing profiles plus other key kinetic features like fork
directionality and inter-origin distances. Researchers with
replication timing data can use this model to rapidly gen-
erate precise replication dynamics profiles without exten-
sive computational expertise, revealing factors that influ-
ence replication timing and genome instability across vari-
ous contexts.

Despite significant advances in mathematical modelling
(Jun et al., 2005; Jun and Bechhoefer, 2005; de Moura
et al,, 2010; Retkute et al., 2012), deriving a position-
specific, data-fitted model that precisely links replication
timing to origin firing has remained a challenge. While
some approaches rely on neural networks to infer proba-
bilistic landscapes of origin efficiency (Arbona et al., 2023),
ours differs by deriving a closed-form relationship between
timing and firing. Rather than relying on complex inference
techniques, our model abstracts intrinsic firing rates with-
out directly tying them to specific biological mechanisms
such as licensing or activation. This allows a precise fit to
observed timing data and enables simulation of genome-
wide dynamics in a direct and interpretable manner. Our
approach improves existing fitting methods by adopting a
convolution-based interpretation of the timing programme.
Using process algebras from concurrency theory (Boemo
et al., 2020), we model replication forks and origins as in-
terconnected entities, simulating their behaviour across the
genome. The key contribution of this work is demonstrat-
ing how a theoretical description of replication timing helps
uncover links between timing, genomic stability, and other
essential genomic processes.
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Methods

Modelling assumptions

We aim to identify and quantify genomic regions where
replication timing deviates from model predictions, here-
after referred to as replication timing misfits, which may in-
dicate potential sites of replication stress or instability. To
accomplish this, we model the complex, nonlinear relation-
ship between origin firing rates and replication timing (Fig-
ure 1b) and fit these rates to experimental timing data. This
approach enables investigation using replication forks, ori-
gins, and DNA templates as the level of abstraction. In par-
ticular, we do not differentiate between leading and lagging
strands, as the formation and joining of Okazaki fragments
are not explicitly included in the model. By concentrating
on the fundamental kinetics driving replication, we gain a
clearer understanding of how origin firing influences out-
comes.

Our model operates under several key assumptions. The
time an origin fires is modelled as an exponentially dis-
tributed variable (independent of fork movement and firing
of other origins), and fork movement as an exponentially
distributed random variable (independent of origin firing
and movement of other forks). We also assume a constant
rate of fork movement throughout (no fork stalling at ob-
stacles); then, forks advance smoothly until encountering
another fork or chromosome end. This assumption avoids
overfitting and indirectly emphasizes the role of origin fir-
ing.

The key variable is the origin firing rate. This encom-
passes origin licensing and activation, plus contributions of
all other proteins and pathways within this process. While a
strong assumption, it is justified by the fact that firing rates
effectively capture the collective outcome of all these un-
derlying processes without explicitly representing molecu-
lar detail. This makes the model both tractable and capa-
ble of producing accurate genome-wide predictions. We
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further sub-divide the genome into 1 kb intervals (sites),
and assign to each a non-zero firing rate determined by a
governing equation that links timing with firing. This resolu-
tion offers a balance between computational efficiency and
biological realism. Although any site is a potential origin,
passive replication and low firing rates ensure the expected
sparsity of origins seen in the genome.

Mathematical modelling of replication

Consider a DNA molecule with n discrete genomic loci,
where each locus can potentially act as an origin that fires
at rate f to initiate a fork that progresses bidirectionally
with speed v, typically measured in kilobases per minute
(kb/min). We aim to determine the average time required
for a site to either initiate replication, or to be passively
replicated by an approaching fork (i.e., its expected repli-
cation time). Initially, we assume that all origins fire at the
same rate, f, but later relax this assumption to allow for
variations in firing rates across different origins. In addition,
by considering a sufficiently large chromosome, we ensure
that effects of chromosomal ends are negligible. Nonethe-
less, the framework can easily be extended to account for
such effects, though they are not critical for the broader
analysis.

Expected time of replication. Let T’ be the time a site takes
to fire or be passively replicated by a fork. We assume
initially that all origins fire at the same rate, f. One may
think of 7" as an explicit function of origin firing times A;,
where A; ~ Exp(f). In particular, E[4;] = 1/f. We index
each site by its distance from the origin of interest, given by
|i]. Notice that i = 0 corresponds to the focal origin, and
v is interpreted as the number of replicated sites per time
unit. We have

T =min{A; +|i|/v} (1)

since it takes time |¢| /v for a fork initiated at site 4 to reach
the origin of interest. Next, we compute the cumulative
distribution function. The minimum in Eq. (1) is greater than
some t if all terms are, which occurs with probability

PT>t)= Hmm{l exp(—

fE=lil/v)} @

since 4; > 0and 4; Exp(f). Hence, the expectation of
replication time for any one site is given by

Bffin] = [ [Lmin{Lesp(-fe—li/o)}at

where the product is taken over all n sites. This integral
can be partitioned across each interval for which |i| <
vt < |i+ 1|. Within these intervals, integrands adopt the
form ae %, thereby permitting analytical evaluation. In the
general case, the result depends on the parity of n. See
Supplementary Note (SN) 1.1 for an explicit expression of
E[T;n].
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As n — 00, a general expression of the expected replica-
tion time for each origin can be written as

R v _ o= f (k1) /v
E{To0] _*Z 2k + 1 -9

With v = 1.4 kb/min (Conti et al., 2007), Figure 2a shows
the dynamics of E[T;n] for increasing values of n. By re-
lating Eq. (4) to the family of theta and Dawson functions
(Tyurin, 2002; Temme, 2010), the following approximation
holds (see SN1.2 for a detailed proof)

1 /[«
E|T; ~ — [ 5
[T500)= 50\ [ 7y (5)
Provided replication timing data {7 }1<;j<n, we have the
following inversion

™

fi~= T (6)
which provides a first estimate for the intrinsic firing rate of
an origin, given its time of replication. Note that Eq. (6) is
an approximation under the specific assumption that firing
rates are uniformly constant across the genome, a sim-
plification that, intriguingly, offers a reasonably accurate
initial estimate for the firing rate distribution in most in-
stances. The fidelity of this approximation is closely tied
to fork speed v and the average of the timing dataset, top-
ics that will be elaborated subsequently.

A generalisation. Experimental data support the idea that
different origins fire at different rates (Rhind et al., 2010).
While our introductory argument assumes a constant fir-
ing rate f across the genome, we should, in general, ex-
pect A; ~ Exp(f;). Then, the replication time definition
in Eqg. (1) should include the site-specific indexation, for
1 <5 <n, as follows

T; = min{A; + |i — j|/v} (7)

with indexes congruent modulo n, that is, |i — j| € Z/nZ
(see SN1). Following a similar argument, the general ex-
pression for E[T};; 00|, with general firing rates { f;}, is ap-
proximately given by

_ZIZ‘Sk(k_lszjJrl/v_ _Z\z\gk(k—i_l_m)fﬁ”/v

,;) 2jij<k Ji+i '
(8)
When f; = f, Vj, Eq. (8) is reduced to Eq. (4). While

Eg. (8) holds true for an infinitely large genome, in practi-
cal terms this series can be limited to 0 < k < R < n/2,
for some large enough R. This parameter represents the
radius of replication influence: the distance within which
neighbouring origins {j — R, ...,j — 1,5+ 1,...,j + R} are
assumed to affect the timing of a focal origin j. In other
words, while every firing origin does theoretically affect
replication timing at any other location, this effect decays
rapidly with distance from the origin of interest j. Numeri-
cally, the finite version of Eq. (8) should mimic the average
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Figure 2. Fitting the model.

(a) Replication asymptotics under uniform firing: logarithmic plot of the expected replication time, E[T'; n], as a function of the firing rate, f, and the number of potential origins,
n (spaced at 1 kb intervals), for 1 < n < oo, with v = 1.4 kb/min. As n — oo, E[T'; n] approximates an inverse power law (blue). (b) Curve fitting for cumulative replication
in S phase. Red markers depict example data points from a high resolution Repli-seq heatmap that shows the cumulative percentage of completed replication across 16 S
phase bins. The blue line is the curve fitted to this data, while the dashed grey line indicates the median replication time, ¢, (the instant in S phase when 50% of replication
is achieved across the cell population). (c) Whole-genome mean squared error between simulated timing profiles and real data for 7 cell lines, in min?. Fitting each line took
~ 3 minutes on a HPC platform (one CPU). (d) Progression of the fitting algorithm over 20 iterations for chromosome 2 in the BJ line on firing rates (above), with iteration 0
corresponding to the initial inverse power law estimate, given by Eq. (6), and the corresponding timing profile (below). (e) Observed (Repli-seq) timing against the simulated
profiles for different lines and genomic regions. (f) Model written in the Beacon Calculus process algebra. Origin firing processes take their location, i (1-kb resolution),
and firing rate fire, as parameters, triggering two replication fork processes, FL (left-moving) and FR (right-moving). Replication terminates when all locations have been
replicated. The simulation begins by invoking the ORI processes, where fire_i corresponds to the firing rate values for each origin i, as determined by fitting Eq. (8).

replication timing obtained from computational simulations
and it will be crucial in solving the fitting problem efficiently.
Ideally, we would like to compute the rates {f;}i1<;<n as
a function of the expectation of T);. Our goal is then to find
a solution to Eq. (8), given data on {IE[T;;n]}, for large n.
Alternative frameworks inspired by the analogy between
DNA replication and crystal growth have been previously
explored by Jun et al. (2005); Jun and Bechhoefer (2005);
Jun and Rhind (2008), revealing other relevant replica-
tion metrics, such as inter-origin distances (Herrick et al.,
2002). Our formulation extends these approaches by es-
timating origin firing rates from discrete replication timing
data across the entire human genome, which is discussed
next.

Replication timing data

Replication timing data was sourced and processed from
two key databases: Encyclopedia of DNA Elements (EN-
CODE; Hansen et al. (2010); Davis et al. (2018)) and
high-resolution Repli-seq from Zhao et al. (2020). To
ensure data consistency and reliability, extensive filtering
and scaling steps were performed on all data sets. We

analyse data from: HUVEC (human umbilical vein en-
dothelial cells), HeLa-S3 (clonal derivative of the parent
Hela, an immortalised cervical cancer line), BJ (normal
skin fibroblast), IMR90 (lung fibroblast), K562 (lymphoblast
cells), GM12878 (lymphoblastoid line), HepG2 (hepatocel-
lular carcinoma line), MCF-7 (breast cancer line), HCT (col-
orectal carcinoma line), plus H1 and H9 (embryonic stem
cell lines). Data for HUVEC, HelLa, BJ, IMR90, K562,
GM12878, HepG2, and MCF-7 cells were obtained from
the ENCODE database using the GRCh37 (hg19) human
genome assembly (Hansen et al., 2010; Davis et al., 2018),
while data for HCT, H1, and H9 cells were sourced from
high-resolution Repli-seq, using the GRCh38 (hg38) as-
sembly (Zhao et al., 2020).

Regarding ENCODE Repli-seq, timing data from each cell
line were analysed across 6 cell cycle fractions: G1/G1b,
S1, S2, S3, S4, and G2, given as a wavelet-smoothed
signal to generate a continuous portrayal of replication
across the genome (Thurman et al., 2007). Importantly,
we rescaled the original wavelet signal, initially normalised
from 0 to 100, by a factor of 6 to better align with an ap-
proximately 8-hour S phase.
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Following standard Repli-seq methods, we applied a sig-
moidal fit to the cumulative replication fraction, Fiep, to de-
termine replication timing according to Zhao et al. (2020).
We consider the median replication time, tp, defined as
the bin value t where Fiep(t) = 50%, indicating that half of
the cell population has completed replication (Figure 2b).
Although Eq. (8) theoretically represents the mean repli-
cation timing, it aligns closely with the median observed
in Repli-seq data, as replication timing distributions gener-
ally exhibit a near-symmetric sigmoidal pattern. Addition-
ally, the median is more robust to experimental noise and
outliers, making it a practical and reliable measure in high-
throughput experiments. Although recent studies have de-
termined telomere timing data (Massey and Koren, 2022b),
we do not incorporate them into our analysis.

Repli-seq data shows consistent patterns across different
cell lines. We present representative results from multiple
lines (Figure 2e), but specific analyses may be more suit-
able for certain cases, depending on the availability and
quality of the data. Although regions with repetitive se-
quences or low complexity are often mapped poorly using
Repli-seq data (Hansen et al., 2010; Zhao et al., 2020),
these regions account for ~ 20% of the genome and show
only a weak correlation with high-misfit regions (phi coeffi-
cient = 0.21). Therefore, we retain this data in our analysis,
as its impact is minimal (see SN2.3).

Fitting algorithm

We develop an algorithm to efficiently fit genome-wide
replication timing data, processing over 3,200,000 potential
origins per genome by leveraging the mean-field dynamics
captured by Eq. (6). While every site is treated as a po-
tential origin, the algorithm effectively suppresses many by
assigning them negligible firing rates, reflecting the selec-
tive activation of origins in the genome. For large n, Eq. (8)
provides an excellent estimate, allowing us to apply a fit-
ting algorithm directly to the theoretical expectation, rather
than relying on averaged outputs from multiple simulations.
The radius of neighbouring influence, R, may be refined for
optimisation. At each site 7, we set

fi(0) = =177 ©)
fik+1) = f;(k) (TjT(f)> (10)

where Tj(k) is the average replication time at iteration k,
via Eq. (8), and T} is the real data value. The parameter o
is adjusted to guarantee convergence towards a stable fir-
ing rate distribution. The extent of each misfit is measured
by the squared difference (fit error) between observed and
expected replication timing, in min?, at each site. Numeri-
cal results and Eq. (6) suggest o = 2 is a reasonable com-
promise between error minimisation and speed. The op-
timised algorithm considers a convolution interpretation of
Eq. (8) (SN2.2). Remarkably, the firing rates for each cell
are fitted in an average time of approximately 3 minutes
using 1 CPU on a high-performance computing platform
equipped with Intel Ice Lake architecture (Figures 2c-e).
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Simulations

To simulate replication, we use Beacon Calculus (bcs), a
process algebra designed for simulating biological systems
(Boemo et al., 2020). Within this framework, replication is
modelled using three core processes: replication origins
(ORI), left-moving forks (FL), and right-moving forks (FR).
Each process is associated with a specific position on the
chromosome of length L, and origins have an additional
parameter, the firing rate, fire, or f in our model (Figure
2f).

In bes, v is understood as the rate of replication by a mov-
ing fork, which is held constant. This differs from the con-
stant fork speed assumption underlying Eqg. (8). Specif-
ically, in the bcs case, the time F} required for a fork
to replicate k consecutive sites follows an Erlang(k,v)
distribution, meaning that E[F);_j] = [i — j|/v, which
mirrors the approximation used in Eq. (7). Therefore,
when averaged over a sufficiently large number of simu-
lations, stochastic deviations in numerical simulations be-
come negligible and they do not compromise the broader
analysis or conclusions.

To track the progress of replication, the model marks re-
gions of the chromosome that have been replicated, allow-
ing us to monitor replication dynamics accurately. In all
bcs simulations, fork speed was set to 1.4 kb/min (Conti
et al., 2007), and results were averaged over 500 simula-
tions, with the radius of influence set to R = 2,000 kb, as
previously defined.

Results

Predicting genome-wide replication

After assigning the time of replication (determined using
Repli-seq data) to every 1 kb segment of the genome in
11 different human cell lines, site-specific firing rates are
fit to the data via Eqg. (8). Then, replication is simulated
using Beacon Calculus (bcs), a concise process algebra
ideal for concurrent systems. Finally, we explore patterns
of replication seen after averaging 500 simulations for each
of the 11 lines (Figure 3a).

We begin by comparing experimental timing profiles to
those obtained from Eqg. (8). Note that this is equiva-
lent to averaging the timing profiles from a large num-
ber of bcs simulations, which also allows us to save sig-
nificant computational resources when computing timing
alone. An example for chromosome 1 in HUVECs is shown
in Figure 3b.i. As expected, some regions replicate early
(e.g., around 173 Mb) and others late (e.g., around 171
Mb). There is generally excellent concordance between
the model’'s output compared with the experimental input.

Our focus is on regions with high misfit error (shaded yel-
low and red areas; Figure 3b.i), where concordance breaks
down because Eq. (8) predicts an earlier replication time.
Instances where it predicts later replication compared to
data are exceedingly rare, underscoring the algorithm’s re-
liance on higher firing rates to achieve the best fit with the-
oretical expectations.
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Figure 3. Predicting genome-wide features of replication.
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(a) Overview of the main model and analysis. Starting with Repli-seq timing data, origin firing rates are fitted through Egs. (8-10). These rates generate expected timing profiles
for comparison with experimental data to identify regions of timing misfits and fork stalling, which are analysed for correlations with other genomic processes. Simulations
of replication features, such as fork directionality and inter-origin distances, validate the model against the literature. (b) Example of main modelling outputs from a region in
HUVEGSs. (i) Replication timing of both experimental and simulated data, and the magnitude of the misfit (error) for replication timing in a region where replication forks often
stall; this leads to elevated errors that the model struggles to capture accurately. (ii) Inferred origin firing rates, and fork directionality, scaled between -1 (leftward) and +1
(rightward). We highlight three regions of interest: (1) A passively replicated site predominantly replicated by rightward-moving forks (RFD ~ 1); (2) A likely origin, characterised
by a high firing rate and an RFD of 0; (3) A poorly fitted region between two origins with a low firing rate determined by the fitting algorithm with RFD of 0 (an equal likelihood
of replication by leftward- and rightward-moving forks). (c) Kernel density estimate (KDE) of firing rate distributions across selected chromosomes in HUVECs. (d-g) KDEs
comparing genome-wide features—including firing rates, replication timing, fork directionality, and inter-origin distances—across different cell lines. All distributions align with
experimental observations. Areas under curves are equal to 1, while y-axis values are omitted to emphasize relative shapes and distributions rather than absolute magnitudes.

While firing rates are directly inferred from Eq. (8), repli-
cation fork directionality (RFD) is calculated as the propor-
tion of cell cycles (or bcs simulations) in which a given site
is replicated by rightward versus leftward forks. RFD val-
ues range from -1 (always replicated by leftward forks) to
+1 (always replicated by rightward forks), with intermedi-
ate values indicating a mix of replication directions across
simulations (Figure 3b.ii).

To validate the model, we examine global distributions of
multiple features. Despite little variation in firing in HU-
VECs (Figure 3c), HCT exhibits a pronounced bimodal pat-
tern, likely driven by differences in data sources (Figures
3d-e; Zhao et al. (2020)), which may affect how replica-
tion timing and origin firing rates are captured. Regarding
RFD, our results demonstrate a balanced bidirectional fork
movement, with fork directionality symmetrically distributed
and accumulating around zero, indicating efficient replica-
tion progression (Figure 3f). This pattern aligns with recent
quantifications of fork directionality in human cells (Ander-
son et al., 2024). While determining inter-origin distances
(IOD) is straightforward from our simulations, doing so from
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DNA-fiber experiments remains challenging due to tech-
nical limitations and potential biases (Quinet et al., 2017;
Técher et al., 2013). Nevertheless, simulations show a
concentration of IODs within the commonly observed range
of 100—200 kb (Figure 3g; Conti et al. (2007)).

Although these results validate the model against estab-
lished metrics, its broader ability to simulate other features,
like replicon lengths and active fork numbers, highlights its
value in capturing the full spectrum of replication dynam-
ics. The most compelling insight, however, comes from
examining regions where the model’s predictions diverge
from data, as these discrepancies may coincide with crit-
ical sites of genomic instability, revealing areas of unique
biological interest, which we address next.

Hotspots of instability

We now determine genome-wide error profiles in all 11 cell
types (Figure 4a illustrates those for chromosome 1). Re-
markably, some of the regions that fit poorly are found in
all cell lines (despite using different genome builds); this
underscores the robustness of profiles across cell types
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Figure 4. Detecting discrepancies in replication timing determined experimentally and in simulations.

(a) Normalised error plots (red - high error, green - low error) highlighting deviations between simulated and experimental replication timings (chromosome 1 in various human
cell lines). Grey areas: missing or unavailable data. (b-d) Density scatter plots illustrating key relationships in H1 cells (averages of 500 simulations). We look at the pairwise
combinations of three variables: replication time, firing rate, and error. Density is represented as the number of data points per pixel on an 80 DPI (dots per inch) resolution across
all plots. In (b), the inverse correlation between replication timing and firing rate is evident, with greater variability in firing rates late in S phase. (c) highlights the relationship
between replication timing and error, showing that high errors are distributed throughout S phase (dotted oval). (d) illustrates the branching relationship between firing rate
and error. (e) Error distributions in HUVECs. Early-replicating regions tend to be error prone, coding and non-coding regions have broadly similar patterns, AT-rich regions
are much like GC-rich ones, and different genomic regions have characteristic profiles. (f) Genome-wide error profiles in different cells. (g) Scatter plot comparing average
simulated timing slope, indicative of the progress of replication over time, against observed data, color-coded by associated error. The zoomed-in region at [1.2,2] X [0, 2]
kb/min highlights the 1.4 kb/min lower bound on the simulated slope. Each dot represents a simulated-observed data pair, with the strand-like continuity arising from the high
resolution of our 1 kb model, where proximity between adjacent pairs reflects the minimal positional shifts captured at this scale.

(Bracci et al., 2023; Muller and Nieduszynski, 2012). Repli-
cation timing and firing rates are strongly negatively cor-
related (Spearman’s rank correlation of ~ -0.89; Figure
4b); regions with higher firing rates tend to replicate ear-
lier. Late-replicating regions also have a wide spread of
low firing rates, reflecting a pattern captured by the fitting
algorithm. Additionally, the lowest errors are seen in the
earliest replicating regions, moderate ones in both early-
and late-replicating regions, and the highest are distributed
throughout mid-to-late S phase (Figure 4c). This suggests
misfits increase as S phase progresses and fewer firing
events occur. Low firing rates are also associated with
high errors (Figure 4d; note the branched profile, reflect-
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ing difficulties in accurately modelling high-to-low firing rate
transitions). Timing misfits are predominantly concentrated
in late-replicating regions (Figure 4e). This is consistent
with prior results suggesting that the replication machin-
ery encounters more obstacles towards the end of S phase
(Branzei and Foiani, 2010; Colicino-Murbach et al., 2024).
Additionally, errors exceeding 10* (min?) are more frequent
in non-coding regions compared to coding ones, indicating
a potential vulnerability of non-coding DNA to replication
stress. Misfits also vary between cell lines, with HCT dis-
playing a distinct pattern likely due to differences in data
processing (Figure 4f; see Methods). Similar disparities
were observed previously (Figure 3d), hinting at the poten-
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tial for cell line-specific analyses to offer further insights.
However, given our focus here, we leave a detailed analy-
sis of these dynamics for future exploration.

In regions with infrequent origin firing, the slope of the
timing curve—representing the rate of replication changes
over time—is primarily governed by fork speed, establish-
ing an effective lower bound of 1.4 kb/min (Figure 4g).
This constraint becomes most evident in regions where
observed slopes fall below such a bound, resulting in er-
ror accumulation around slower-replicating areas. Origin
competition, where nearby origins fire at similar times, fur-
ther compounds these errors, producing timing ‘valleys’ be-
tween origin firing peaks. These patterns highlight regions
of potential stress, suggesting areas for further study.

Fragile sites and long genes

Fragile sites are cytogenetically defined gaps and breaks
in metaphase chromosomes (Li and Wu, 2020); exam-
ples include FRA3B (Letessier et al., 2011) and FRA16D
(Palakodeti et al., 2004). They are often seen after par-
tially inhibiting DNA synthesis or applying other replica-
tional stresses (Glover et al., 2017). They also contain
few origins (Sinai and Kerem, 2018), and probably arise
due to fork stalling or collapse (Kaushal and Freudenreich,
2019). Fragile sites can be broadly categorised into com-
mon fragile sites (CFSs) present in the whole population
and rarer ones (RFSs) found in only a few individuals. We
consider both classes, using locations from the HumCFS
database (Kumar et al., 2019) and gene locations from the
GENCODE Genes track v46 (Frankish et al., 2023).

As seen in Figure 4c, replication timing misfits are most
pronounced in mid-to-late S phase, where our model strug-
gles to capture timings accurately. Regions such as cen-
tromeres and telomeres, as well as most fragile sites of-
ten map to regions of high error, particularly during late
S phase (Figures 5a-d). FRA3B and FRA16D show even
higher median misfit lengths, suggesting these regions
are especially challenging for the model to fit (Figure 5e).
Similarly, long genes in fragile sites, such as CNTNAP2,
LRP1B, and FHIT, also exhibit substantial error (Figures
5f-g). Under a certain error threshold, long genes over-
lapping with misfit regions, including those in fragile sites,
may be easily identified through our model (Figure 5h). Ap-
proximately 30% of these genes overlap fragile sites, rein-
forcing the established link between late replication timing
and the demands of transcribing long genes. Notably, chro-
mosomes 15, 20, and 22 show no significant misfits asso-
ciated with fragile sites, likely due to a lower abundance
or reduced activity of fragile sites on these chromosomes.
While not all fragile sites follow this pattern, the observed
timing misfits at long genes suggest broader genomic reg-
ulation factors that may underlie replication stress. Fragile
sites are cell type-specific (Letessier et al., 2011; Le Tallec
et al., 2011), yet we observed consistent trends in fragility-
misfit correlations across all 11 lines analysed, with H1
cells used as an illustrative example; this consistency sug-
gests conserved replication dynamics, with the implications
of cell type-specific variation addressed in the Discussion.
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Transcription and chromatin state

Transcription and replication have long been recognised to
interact in complex and sometimes conflicting ways, par-
ticularly at fragile sites (Knott et al., 2009). Previous stud-
ies show that transcription-dependent barriers can obstruct
fork progression, leading to stalling or collapse, while long
genes associated with CFSs often initiate poorly, forcing
forks to traverse longer distances from adjacent origins to
delay replication completion (Blin et al., 2019). This delay is
particularly pronounced in transcriptionally active regions.
However, this is not always the case, as chromatin struc-
ture can play a more dominant role in timing discrepancies.
Building on the previous results, we now turn our attention
to interactions between transcription, chromatin structure,
and replication.

Regulatory elements like active promoters and enhancers
are marked by histone modifications such as H3K4me3
(Huang et al., 2019), DNase | hypersensitivity (DHS),
and transcription-factor binding, detected using ChlIP-seq
(Cockerill, 2011; Young et al., 2011). By integrating data
from ChIP-seq, RNA-seq, and GRO-seq (Cockerill, 2011;
Crawford et al., 2004; Marguerat and Bé&hler, 2010; Lopes
et al., 2017), we assess how these markers are associated
with replication timing.

Regions with high GRO-seq signals align with peaks in
H3K4me3 and DHS signals; they exhibit lower timing er-
rors and higher firing rates (Figure 62a). Spearman rank
correlation analyses reveal varying degrees of associa-
tion between variables (Figure 6b). This method was cho-
sen due to its suitability for non-normally distributed data
and its ability to capture monotonic relationships, reflect-
ing the ranked nature of our genomic features. Pearson
and Kendall’s Tau tests were conducted for comparison
(SN2.4). The consistently higher Spearman rank correla-
tions indicate a strong monotonic relationship, particularly
between DHS sites and firing rates, as well as between
promoters and firing rates, revealing how chromatin acces-
sibility facilitates replication initiation, even amid non-linear
interactions.

We observed a moderate to strong negative correlation
between GRO-seq and misfits across all lines. This sug-
gests that the replication machinery may encounter fewer
impediments in regions with active transcription. A possi-
ble explanation is that transcriptionally active regions are
more likely to be in an open state, reducing mechanical
barriers to fork progression and lowering the chances of
replication stress. Moreover, transcription factor-binding
sites have been shown to enhance DNA replication, as
evidenced by studies demonstrating that these sites sig-
nificantly increase replication efficiency (Turner and Wood-
worth, 2001).

Furthermore, origin density strongly correlates with pro-
moter density (Sequeira-Mendes et al., 2009). This co-
evolution of replication and transcription regulatory regions
further supports the idea that transcriptional activity not
only facilitates replication but also influences the efficiency
and organisation of origins in mammalian cells. The strong
correlation between high origin firing rates and regions of
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Figure 5. Timing errors in fragile sites and long genes.
(a) Replication timing vs. error on chromosome 1 in H1, highlighting regions with local maxima in error and neighbouring high-error zones (within a 300 kb radius). The threshold
for identifying local maxima in errors is set at 1028 (min?). Each dot represents an error-timing data pair, with the strand-like continuity arising from the high-resolution of our 1
kb model. (b) Genome-wide scatter plot displaying replication timing vs. error, with specific focus on centromeres (blue) and telomeres (orange), alongside the whole-genome
data. (c) Scatter plot for chromosome 16, zooming in on FRA16D, revealing a continuous error path in mid-to-late replication, near the WWOX gene. (d) Examples of misfit
regions detected by the model across three different chromosomes (3, 6, and 7). Each panel shows the chromosome ideogram, gene locations, and a comparison between
the observed data (grey) and model predictions (red), as well the associated error. Notably, misfit regions overlap with long genes such as FHIT (Chr 3), PRKN (Chr 6),
and CNTNAP2 (Chr 7). (e) Misfit distribution for common (blue) and rare (pink) fragile sites. Top: length (in Mb) of continuous misfit regions. Bottom: misfit fraction relative
to site length. (f) Misfit fraction analysis of the largest genes within fragile sites. (g) Scatter plot of replication timing vs. error trajectories for long genes, highlighting error
accumulations based on gene size and location within fragile sites. (h) Table showing the 10 longest genes misfitted by the model across all chromosomes, ranked from largest
to smallest (left to right). Genes intersecting fragile sites are highlighted in different colors: blue - common fragile sites, pink - rare fragile sites, green - both. All plots refer to

H1 with Repli-seq reads aligned to hg38.

active transcription, open chromatin, and promoters pro-
vides further insight into genome-wide coordination of repli-
cation and transcription.

Notably, putative origins are often located in open and
early-replicating chromatin (Audit et al., 2009; Chen et al.,
2019) that is well fitted by our model. This synchroni-
sation between replication and transcription may prevent
replication stress, particularly during late S phase, aligning
with the observation that transcriptionally active euchro-
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matin tends to replicate early, and silent heterochromatin
late (Gilbert, 2002). Under replication stress, this coupling
is adjusted, with initiation and termination sites shifting to
maintain the balance between replication and transcription,
highlighting the intricate coordination that sustains genome
integrity.
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Figure 6. Replication timing discrepancies and firing rate profiles correlate with transcriptional and chromatin data.

(a) Snapshot from the UCSC Genome Browser showing a detailed view of chromosome 1 (p36.11-p34.2) in HUVEC and HeLa (hg19). Various tracks compare transcriptional
and chromatin data to misfit magnitude (error) and firing rate profiles obtained from our model (log-scale). Tracks include RNA-seq (marking mature mRNA levels), GRO-seq
(nascent RNA), ChIP-seq for H3K4Me3 (promoters), and DNase | hypersensitivity (open chromatin). The error for each line is represented as a translucent heat map across
tracks, with colours ranging from green (good fit) to yellow/red (poor fit). (b) Heatmap displaying the Spearman correlation coefficients between origin firing rates and fit errors
with transcriptional and chromatin features for HeLa, HUVEC, and K562. All tests returned p-value < 10°71%.

Discussion

In genome-wide simulations, our model effectively cap-
tured key replication dynamics, including replication tim-
ing, fork directionality, and inter-origin distances. Replica-
tion timing was fitted with high precision across most of
the genome, with only a few regions where observations
clearly deviate from simulations (Figure 2). While misfit
distributions varied across different chromosomes and cell
lines (Figure 3), late-replicating regions consistently exhib-
ited higher misfit rates (Figure 4). This matches previous
findings suggesting these regions are more prone to repli-
cation challenges. Firing rates were also strongly nega-
tively correlated with timing misfits; regions with infrequent
origin firing are more susceptible to timing deviations. Addi-
tionally, non-coding regions had a higher frequency of mis-
fits, highlighting their potential vulnerability. Misfits were
particularly enriched in fragile sites and long genes (Fig-
ure 5). Our analysis pools data from multiple studies and
cell types (Kumar et al., 2019). While this provides a broad
overview, it does not account for the cell type-specific repli-
cation programs that underlie fragile site expression. Frag-
ile sites are influenced by transcriptional activity and repli-
cation timing, both of which vary between cell types (Le Tal-
lec et al., 2011; Brison et al., 2019). For instance, fibrob-
lasts and lymphoblastoid cells exhibit distinct replication
initiation patterns, which affect the timing and extent of
fragility (Letessier et al., 2011). We observed consistent
trends in the correlation between fragility and replication
timing misfits across all 11 lines analysed, with H1 cells
used as an illustrative example. This consistency high-
lights the robustness of the approach in identifying con-
served replication dynamics and suggesting candidate re-
gions and genes of interest. Researchers with access to
cell type-matched Repli-seq and fragility data could refine
this framework to achieve more specific insights. The in-
vestigation of early-replicating fragile sites (ERFS), which
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are associated with highly transcribed genes (Barlow et al.,
2013), will be an important topic for future work.

Although the model does not incorporate detailed molecu-
lar mechanisms, regions with high origin firing rates were
nonetheless strongly associated with active transcription,
open chromatin, and promoter activity (Figure 6). These
findings align with established knowledge, validating the
model and underscoring its robustness. Notably, many
misfit regions overlap with known fragile sites or distinct ge-
nomic locations, leading to the hypothesis that the model
can refine the definition of fragile sites, distinguishing
smaller, more nuanced regions of fragility, or even identify-
ing novel sites prone to replication stress. Such predictions
highlight the model’s utility in uncovering unexplored ge-
nomic vulnerabilities, warranting further experimental vali-
dation.

Our approach has various limitations. For instance, we
simplistically assume that each origin fires independently
of others, which may not capture the full complexity of ori-
gin licensing and activation. However, this simplification
allows the model to fit human Repli-seq data rapidly, mak-
ing it a practical tool for genome-wide analyses. Even
so, in reality, a multiplicity of factors (e.g., ORC, Cdcs,
and MCM proteins) regulate complex pathways of origin li-
censing, while later checkpoints and stress response path-
ways influence cell-cycle progression (Boos and Ferreira,
2019). Another limitation is that we take no account of
higher-order genome structure, but could incorporate data
from, for example, Hi-C (Gindin et al., 2014) and the po-
sition of R-loops, hairpins and G-quadruplexes that are
known to obstruct replication and cause transcriptional
conflicts (Garcia-Muse and Aguilera, 2016). Furthermore,
our model could highlight the relationship between origins
and DNA break clusters, such as those found at timing tran-
sition regions, which are prone to replication-transcription
conflicts and genome instability (Corazzi et al., 2024). A
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third limitation is that adapting the model for species like
Saccharomyces cerevisiae, that have small genomes with
precisely located origins, would necessitate adjusting as-
sumptions. A feasible generalisation to achieve this in-
volves setting low firing rates at specific locations and
modifying the radius of influence in Eq. (8) to account for
the distance to chromosome ends. Additionally, Repli-seq
data averages timing across populations, masking single-
cell heterogeneity (Massey and Koren, 2022a; Dileep and
Gilbert, 2018); future studies using single-cell data could
reveal variability in replication dynamics.

An exciting application of the model involves exploring the
impact of chemotherapies on replication dynamics, partic-
ularly those therapies that target the Replication Stress
Response (RSR) pathway and its key signalling proteins
(Berti and Vindigni, 2016). By simulating the inhibition of
these proteins, the model could provide valuable insights
into how these disruptions affect replication timing, origin
firing, and potential cell death (Manic et al., 2018). This
could facilitate prediction of which combination chemother-
apies might provide cost-effective approaches to optimise
cancer treatments.

Data and code availability

The GRO-seq data used in this study were obtained
from the Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/) under the following accession numbers:
GSE62046, GSE94872, and GSE60454. The source code
for the main fitting algorithm, along with the replication
timing fit error and origin firing rate bedgraph files, are
hosted on the following GitHub repository: https:/github.
com/fberkemeier/DNA_replication_model.git. The Bea-
con Calculus simulations were performed using version
1.1.0 of bcs, available at hitps:/github.com/MBoemo/bc
(Boemo et al., 2020). Additional examples of bcs scripts
and optimisation algorithms can be found in SN2. For
any comments, suggestions, or questions, please contact
fp409@cam.ac.uk.
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Supplementary Information

Supplementary Note 1: Mathematical notes

1.1. Expected time of replication

Without loss of generality, we assume a ring network (periodic DNA) to enforce symmetry of replication with respect to
a focal origin. In a large genome, this periodic assumption has minimal influence across most regions, apart from the
chromosome ends.

Let T be the time a site takes to either fire (if it is a replication origin) or be replicated by an incoming fork. We
can think of T as an explicit function of the origin firing times A;, where A; ~ Exp(f). In particular, E[A;] =1/f. We
index each site by its distance from the origin of interest, given by |i|. Notice that ¢ = 0 corresponds to the focal origin, and
v is interpreted as the number of replicated sites per time unit. We have

T =min{A; +i|/v} (S1)
(2
since it takes time |i| /v for a replication fork initiated at site 4 to reach the origin of interest. Then,

P(T>t)= HP(AZ- >t—li|/v) = Hmin{l,exp(—f(t— li]/v))} (S2)
i i
since A; > 0and A; N Exp(f). Hence, the expectation of the replication time for any one site is given by
oo oo
E[T] = / P(T > t)dt = / T min{1, exp(—F(t— il /v)) } dt. (s3)
0 0o

This integral can be partitioned across each interval for which |i| < vt < |i + 1|. Within these intervals, the integrands
adopt the form ae %%, thereby permitting analytical evaluation. A few particular cases include:

* One origin (n =1):
e 1
E[T;1] = / e ftdt == (S4)
0 f
» Two origins (n = 2):

1 o
E[T;2] :/ e*ffdﬁjL/1 e =1/ gy =
0 £

v

)

e (S5)
)

e (S6)

) (S7)

where E[T';n] = E[T] for each n. In the general case, the result depends on the parity of n. When n is odd, for each k,
there are 2 origins at a distance of k = 1,2,...,(n —1)/2 from the origin of interest. Adding up these distances leads to

| =
/N
—
|
N =
|

» Three origins (n = 3):

=

1[-3[T;3]=/Ue*ffdrf+/l e~ fGt=2/v) gy —
0 =

v

N
N
=
|
Wl o

|

* Four origins (n = 4):

1N

1 2
et v - 1 1 4 2
EIT: 4] = —ft —f(3t—2/v) / —fat=a/v) gy — 2 (1 L4y _ 2o
[T;4] /0 2 dH—/l e dt + A e dt 7 3¢ 3¢

v

(n=3)/2  (k+1)/v S
E[T;1044] = Z / e T ((2k+1)t—k(k+1)/v) dﬁ+/ e~ f(nt=(n=1)(n+1)/(4v)) g4 (S8)
k=0 “k/v (n—1)/(2v)

where the last term is just the k = (n — 1)/2 term of the sum with the upper limit replaced by co. Solving the integrals
yields

(n=3)/2 k20 _ = f(k+1)2 /v o= f(n—1)2/(4v)
e — e e
ElTinesd =5 | S + ~ )

f = 2k+1 n
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When n is even, for each k there are 2 origins at a distance of k = 1,2,...,(n —2)/2, and then there is 1 origin at a
distance of n/2. Again, we add up the distances, each twice, but since there is only one origin at a distance of n/2, the
very last distance sum is n?/4. So, we get

(n=2)/2 (k+1)/v oo )
E[Tineen] = 3 / e—f((2k+1)t—k(k+1)/v)dt+/ o~ f(nt—n?/(40)) gy ($10)
k=0 k/v n/(2v)
Solving the integrals yields
. 11222 k20 _ g f (k120 (— 2/ (40))
»Teven| = = . 11
[ ;e en] 7 %+ 1 + n (S11)

k=0
Using the ceiling function [-] to handle parity, a general expression for each origin, and any n, is

[0 3)/21 —pk2jo _ = f(+1)2 /0 o= F([(n=1)/21)% /v

1
E[T;n]= - . S12
[Tin] =7 2 2%+ 1 + " (512)
In particular,
—fE2Jv _ o~ f(k+1)2 /v
e e
E[T;00] = nlg%oE [T;n] f Z i1 (S13)

which is Eqg. (4). Eqg. (8) arises from a similar reasoning, achieved by expressing the product of exponentials as a single
exponential of sums. Although the series E[T;n] converges for f > 0, its closed-form expression is not known. If we
rescale time T' = fT, t = ft, and define = f /v, we may rewrite Eq. (S12) in a more compact, non-dimensional form

[(n3)/21 —ak? _ —a(k41)?  —a([(n—1)/2])2

E[T;n] = ) S14
GUEEDY 2%+ 1 i n 519
k=0
As n — 0o, we have
> —zk?_ —x(k+1)2 —ka
~ . =, o e e -
E[T;00] = nh_)mOOIE[T,n] = ,;) il Z e (S15)

A few interesting observations can be made regarding the upper bounds of this limit.

1.2. On Dawson function estimates
The series g(z) = E[T’;00] is related to the family of theta functions (Tyurin, 2002), allowing us to express it in terms of

z)=>_ ¢~ (@k)? (S16)

kEZ

which satisfies ¥(1/x) = x9(z). From Eq. (S15), g satisfies

g(z)+4¢'(z Ze =d(/z/7), (S17)

kez
and thus
x/4
g(x) = e*“”/4/ eV 9(24/y/m)dy. (S18)
0
In particular, for small z we have
2
9(x) = VaD4 (V& /2)+O(we™™ /7) (519)
where
_ =22 : T 1 - (_1)nn[ 2n+1
Dy(z)=e /0 e’ dt= 5 nzz:o @nr1) (2z) (S20)

is the Dawson function (Temme, 2010). A less accurate estimate is then g(z) = /72 /24 O(x3/2). Various upper bounds

may also be obtained this way. Reverting the change of variables, we get E[T'; 00| ~ %4 /ﬁ, as in Eq. (5).
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Supplementary Note 2: Computational methods and data

2.1. Beacon Calculus model
As discussed in Boemo et al. (2020), a simplistic model of DNA replication using bcs consists of three core process
definitions: replication origins (ORI), left-moving forks (FL), and right-moving forks (FR). The origins are positioned along
the chromosome of length L. Each of these three processes possesses a unique parameter, denoted as i, which is
assumed to be a specific position on the chromosome between 1 and L. In addition to this, the origins have one more
parameter: a replication initiation rate, known as fire, or f in our model (generalised models may also include licensing
probabilities). To monitor which positions on the chromosome have already undergone replication, the model uses markers
called beacons. Upon the replication of position i by a fork, a beacon is dispatched on the chr channel with parameter i.

The following is an example of the bcs script with 10 replication origins equally spaced over 100 sites

// DNA Replication

// Variables
// Chromosome length

L = 100;

// Fast rate

fast

100000;

// Fork velocity

v =1.4;

// Process definitions
ORI[i,fire] = {~chr?[i],fire}.(FL[i]l||FR[i]);

FR[i]
FL[i]

{chr![i],fast}.[i < L] -> {~chr?[i+1],v}.FR[i+1];
{chr![i],fast}.[i > 0] -> {~chr?[i-1],v}.FL[i-1];

// Process initiation

ORI[1,0.06048832790213383] || ORI[12,0.002045183033099289]

|l ORI[23,0.0012753405213046796]

|1 ORI[45,0.001035526093646997] || ORI[56,0.0011165358858784408]
|1 ORI[67,0.002560893635329413] || ORI[78,0.003411336829553979]

|l ORI[89,0.0022730688407988954]

// End

|1 ORI[34,0.0011945930278953077]

|1 ORI[100,0.0038028859830789045] ;

A periodic version of DNA replication can be achieved by changing both FR and FL process definitions to

FR[i]
FL[i]

{chr![i],fast}. (([i<L] -> {~chr?[i+1],v}.FR[i+1]) || ([i==L] -> {~chr?[0],v}.FR[0]));
{chr![i],fast}.(([i>0] -> {~chr?[i-1],v}.FL[i-1]) || ([i==0] -> {~chr?[L],v}.FL[L]));
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2.2. Fitting algorithm

The following code presents the main fitting function, fitfunction, used in the fitting algorithm described in previous sec-
tions. It provides an efficient way of computing Eq. (8) to mimic bcs simulations for non-uniform firing rates. fitfunction
accepts four arguments: 1ist (a data vector with the RT profile of the entire genome), vO (average fork speed, usually set
to 1.4 kb/min), and st0 (parameter R, as discussed before). The first guess x00 is then constructed based on list, by
Eq. (6). We use an adapted version of np.roll (). Data was processed via the Python extension pyBigWig (Ryan et al.,
2021). See hitps://github.com/fberkemeier/DNA _replication_model.git for further details.

# Import de

pendencies

import cProfile
import math

from time i

mport monotonic

from typing import Any

import nump

# Main func
def fitfunc

y as np

tion
tion(list, v0, st0):

timel = list

v =
st
exp
x00
#V

def

def

def

def

Xs
my_

vO0

= st0

_v = np.exp(-1/v)

= np.array([(math.pi/(4*v))*i**(-2) for i in timel])

ECTORIZED APPROACH

fast_roll_add(dst, src, shift):
dst[shift:] += src[:-shift]
dst[:shift] += src[-shift:]

fp(x, L, v):
n = len(x)
y = np.zeros(n)
last_exp_2_raw = np.zeros(n)
last_exp_2 = np.ones(n)
unitary = x.copy()
for k in range(L+1):
if k !'= 0:
fast_roll_add(unitary, x, k)
fast_roll_add(unitary, x, -k)
exp_1_raw = last_exp_2_raw
exp_1 = last_exp_2
exp_2_raw = exp_1_raw + unitary / v
exp_2 = np.exp(-exp_2_raw)

# Compute the weighted sum for each j and add to the total

y += (exp_1 - exp_2) / unitary

last_exp_2_raw = exp_2_raw
last_exp_2 = exp_2
return y

fitf(time, 1lst, x0, j):
return x0[j] * (1st[jl/time[j])**(2)

cfit(time, 1lst, x0):
result = np.empty_like(x0)
for j in range(len(x0)):
if fitf(time, 1lst, x0, j) < 10*x(-20):
result[j] = 10*x(-20)
elif abs(time[j] - 1st[jl) < .5:
result[j] = x0[j]
else:
result[j] = fitf(time, 1st, x0, j)
return result

= x00
list = [’:.20f’.format(i) for i in xs]

return my_list
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2.3. Data mappability

Repli-seq data often face mappability issues, particularly in regions with repetitive sequences or low complexity, where
short DNA reads cannot be accurately mapped (Hansen et al., 2010; Zhao et al., 2020).

Based on data from Hansen et al. (2010), these regions of low or problematic mappability account for approxi-
mately 20% of the whole genome and around 25% of high-error regions (defined as those with errors exceeding 102 min),
highlighting their relevance in areas prone to replication timing errors. The mean size of these gaps is approximately 42.37
kb (Figure S1). On average, we observed a phi coefficient of 0.21 when comparing high-error regions and problematic loci,
indicating a weak positive correlation between the two. This coefficient, derived from a contingency table, suggests that
while there is some overlap between high-error and masked regions, the correlation is not strong. Despite this overlap,
mappability issues do not significantly affect overall replication timing analyses, as the majority of high-error regions occur
in well-mapped genomic areas, ensuring the reliability of the data.

Given the low phi coefficient, we do not exclude these data from our analysis, since the presence of low mappabil-
ity regions does not appear to be a major factor influencing replication timing errors, allowing us to retain these data in our
analysis without compromising its validity.

3000 -

2500 A
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1500 A

1000 A

500 A

0 10 20 30 40 50 60
Region size (kb)

Figure S1. Distribution of problematic mappability region sizes.

Histogram showing the distribution of region sizes with low or problematic mappability (in kilobases) across the genome. These regions

are excluded from replication timing analyses due to difficulties in accurately mapping sequencing reads. The majority of these regions

are small, with peaks around 1-5 kb and another noticeable peak around 20 kb. The mean size of these regions is approximately 42.37
kb.
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2.4. Data correlations

Here, we present a comparison of different statistical tests applied to the datasets discussed in the main text.
This analysis evaluates the relationships between replication timing error, firing rates, and transcriptional or chromatin
features, providing insights into the suitability and results of Pearson, Spearman rank, and Kendall’s tau tests for these data.

Pearson, Spearman rank, and Kendall's tau offer distinct advantages based on the nature of the data and relation-
ships analyzed. Pearson is suited for continuous, normally distributed data with linear relationships, while Spearman rank
excels with non-linear or ordinal data by capturing monotonic trends through ranked values. Kendall’s tau is particularly
effective for smaller datasets, using concordant and discordant pairs to measure associations. Given the non-linear and
ranked nature of replication metrics, Spearman rank is ideal for our analysis. Figure S2 shows the correlations between
replication timing error, firing rates, and transcriptional or chromatin features, demonstrating the relevance of these tests to
our data.

Whole-genome correlation coefficients

Hela-S3 HUVEC K562
Firing rate Error Firing rate Error Firing rate Error
1 1 1 1 1 1 1 '00
GRO-seq - 0.33 -0.057 0.37 -0.056 _ -0.047
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Figure S2. Correlations between replication, transcription and chromatin data.
Heatmap displaying the Spearman, Kendall’s Tau, and Pearson correlation coefficients between origin firing rates and fit errors with
transcriptional and chromatin features for HeLa, HUVEC, and K562 cell lines. All tests returned p-value < 1071,

References

Boemo, M. A., Cardelli, L., and Nieduszynski, C. A. (2020). The beacon calculus: A formal method for the flexible and concise modelling of biological systems. PLoS computational biology, 16(3):e1007651.

Hansen, R. S, Thomas, S., Sandstrom, R., Canfield, T. K., Thurman, R. E., Weaver, M., Dorschner, M. O., Gartler, S. M., and Stamatoyannopoulos, J. A. (2010). Sequencing newly replicated DNA reveals
widespread plasticity in human replication timing. Proceedings of the National Academy of Sciences, 107(1):139-144.

Ryan, D., Eraslan, G., Griining, B., Silva, R., Marks, P., and Ramirez, F. (2021). pybigwig. deeptools/pybigwig: 0.3.17 (version 0.3.5).

Temme, N. M. (2010). Error functions, dawson’s and fresnel integrals.

Tyurin, A. N. (2002). Quantization, classical and quantum field theory and theta-functions. arXiv preprint math/0210466.

Zhao, P. A, Sasaki, T., and Gilbert, D. M. (2020). High-resolution Repli-seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome biology,
21:1-20.

Berkemeier etal. | DNA replication timing reveals genome-wide features of transcription and fragility Supplementary Information | 6



	Mathematical notes
	Expected time of replication
	On Dawson function estimates

	Computational methods and data
	Beacon Calculus model
	Fitting algorithm
	Data mappability
	Data correlations


