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Within the expansive landscape of evolutionary
dynamics, symmetry features embedded in well-
established models significantly influence the inter-
pretation of individual interaction patterns. Such
symmetries are determined through interaction ker-
nel functions, which serve as mathematical models
for characterizing the complexity of interactions be-
tween individuals, each with distinct phenotypes.
By incorporating analytical tools from logic and set
theory, we aim to provide a deeper understanding of
these functions, relevant to mechanisms of evolu-
tion. We prove that the kernels introduced in Cham-
pagnat et al.’s unifying framework exist provided
birth and death rates are symmetric with respect
to non-focal traits. The kernels may nevertheless
be highly challenging to construct, thereby indicat-
ing a complex underlying mathematical infrastruc-
ture within unified evolutionary dynamics. We show
how interaction kernels for asymmetric frameworks
arising in evolutionary graph theory can be derived
by incorporating individuals’ graph labels into their
phenotypes. These insights invite new avenues for
research, providing a fresh understanding of the in-
teractions between individuals in broader biological
contexts.
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Introduction
In the mid-19th century, Charles Darwin put forth the
transformative theory of natural selection, suggesting
that species undergo changes over time (Darwin et al.,
1958; Darwin, 1987). This theory posits that each
species possesses unique, inheritable genetic varia-
tions that have slowly evolved from a shared ances-
tor over a vast period of time, ultimately constructing
an intricate tree of life. This tree manifests through a
continual and varied sequence of branching events, in-
cluding reproduction, death, and mutation, giving birth
to new species in a phenomenon referred to as spe-
ciation. These fundamental processes permeate all
of biology. Evolution shaped by natural selection pro-
motes advancement and enhancement. More specifi-
cally, the traits that contribute to increased fitness within
a species’ phenotype are likely to become more preva-

lent. Darwinian fitness can be loosely understood as the
capacity of an individual to live long enough to procre-
ate successfully numerous times in order to sustain the
population or species.

In early debates, biometricians W. F. R. Weldon and
Karl Pearson presented arguments in favour of Darwin’s
theory, asserting that even minor variations could wield
considerable influence on evolutionary progress (Dar-
win, 1859; Martins, 2007). In contrast, Francis Gal-
ton and William Bateson proposed that evolution fun-
damentally occurs in leaps and bounds, facilitated by
the sudden appearance of markedly different individ-
uals capable of passing on their phenotypes to future
generations (Norton, 1973; Olby, 1989). As the scien-
tific understanding evolved, the concepts of Mendelian
genetics and Darwinian evolution were harmoniously
integrated by Haldane, Fisher, and Wright (Haldane,
1956; Fisher et al., 1958; Haldane and Jayakar, 1963;
Wright, 1969). This synthesis expanded the mathe-
matical framework for modelling and interpreting these
systems. Such mathematical articulation of evolution-
ary dynamics laid the foundation for groundbreaking
theories, including Hamilton’s kin selection (Hamilton,
1970), Kimura’s theory of neutral evolution (Kimura and
Harper, 1970), and Maynard Smith’s evolutionary game
theory (Smith, 1982). Overall, the cornerstone of math-
ematical models for adaptation and co-evolution of bio-
logical populations within Darwinian dynamics, focusing
on selection and mutation, lies in a comprehensive un-
derstanding of population genetics combined with evo-
lutionary game theory.

Processes that enhance fitness are typically instrumen-
tal in shaping evolutionary dynamics by posing an op-
timisation problem amenable to modelling. Over time,
these dynamics often reach a predictable equilibrium af-
ter resolving the problem at hand. However, stochastic
effects arise in these systems due to genetic mutations
and environmental changes. To analyse frequency-
dependent selection across the phenotypic space, the
integration of evolutionary game theory becomes an es-
sential part of the mathematical and computational ap-
proach to biology.

The triad of evolution – reproduction, mutation, and se-
lection – has been the subject of extensive research
within the domain of evolutionary dynamics. Notably,
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a number of studies have attempted to integrate vari-
ous evolutionary dynamics modelling methodologies in
multiple ways. A unified framework for modelling evolu-
tionary processes was created in the deterministic sce-
nario, taking into account a continuous relative fitness
function of strategically interacting individuals. Here, the
authors examined broad categories of evolutionary dy-
namics and compared them to Nash equilibria (Kreps,
1989; Joosten, 1996). Leveraging the equivalence be-
tween the replicator-mutator equation, which delineates
the dynamics of population distribution (Hadeler, 1981),
and the Price equation, describing its moments (Price
et al., 1970; Price, 1972), numerous mathematical mod-
els of evolutionary dynamics were demonstrated to fall
under a cohesive, unified framework (Page and Nowak,
2002). These equations have been revealed to spawn
a multitude of modelling contexts, such as adaptive dy-
namics (Nowak and Sigmund, 1990; Metz et al., 1995;
Dieckmann and Law, 1996), evolutionary game dynam-
ics (Hofbauer et al., 1998), the Lotka-Volterra ecological
equation (Volterra, 1926), and the quasi-species equa-
tion pertinent to molecular evolution (Eigen et al., 1989).

Evolutionary dynamics were also studied under differ-
ent timescales and rescaling limits by N. Champag-
nat and colleagues (Champagnat et al., 2006). It was
discovered that the architectural framework of macro-
scopic models within evolutionary dynamics is consid-
erably shaped by the temporal aspects of individual
events. In this context, the authors presented a de-
tailed model that encapsulates the stochastic dynamics
of birth, mutation, and death in continuous time, influ-
enced by each individual’s trait values and their interac-
tions with others. This culminated in a general algorithm
for an efficient numerical simulation of the individual-
level model. Using the stochastic point process, an ar-
ray of macroscopic models of adaptive evolution was
generated, each differing based on the assumed renor-
malisation (such as population size, mutation rate, and
mutation step), thereby influencing their deterministic or
stochastic nature under precise time rescaling.

Early in the discussion of this unifying description of
evolutionary dynamics, microscopic population point
processes were introduced as dependent on the inter-
action between different individuals, characterised by
their phenotypes. Such a dependence was written in
terms of interaction kernels, which provide the basis of
the process construction. Our study aims to identify the
constraints of such a modelling framework. Specifically,
we strive to comprehend how symmetry with respect to
(w.r.t.) non-focal phenotypes, reliant on these interac-
tion kernels, is upheld within this framework. Our inves-
tigation leads us to a deep theoretical discourse, rest-
ing on the principles of the Axiom of Choice and Zorn’s
Lemma. Although the biological interpretation of the Ax-
iom of Choice offers a fascinating philosophical topic on
its own, it falls outside the purview of this work.

We revisit the point process modelling notions in Cham-
pagnat et al. (2006), along with the primary instruments

from logic and set theory employed in validating the cen-
tral theorems in this work. Ultimately, we highlight some
implications of these theorems with examples concern-
ing evolutionary games defined on graphs.

Theoretical framework
Here we present the main theoretical background, in-
cluding the relevant concepts presented in Champagnat
et al. (2006), as well as the set theory elements essen-
tial to the main discussion.

Evolutionary dynamics
The explanation of the population point process in
Champagnat et al. (2006) makes use of several mathe-
matical techniques and ideas. The comprehensive ex-
position below closely follows the discussion presented
in that paper.
Each individual’s phenotype is represented as a real-
valued vector of trait values. The trait space X satisfies
X ⊆ Rℓ, where ℓ is the number of traits. A counting
metric that counts the number of individuals displaying
various phenotypes is used to characterise the popula-
tion as a whole, evolving according to a Markov pro-
cess (Gagniuc, 2017). The Markov property presup-
poses that the population’s dynamics at time t depend
exclusively on the population’s current state.
Here, we take into account a population in which individ-
uals can reproduce and die at rates that are determined
by their unique traits as well as by their interactions with
others who have similar or different traits. These events
occur continuously and at random. Reproduction is al-
most faithful, but there is a chance that a mutation will
result in an offspring with a phenotype that is different
from that of its ancestor. For the purpose of our discus-
sion, however, we do not account for mutations.
Birth and death rates of focal individuals with pheno-
type x ∈ Rℓ are defined as functions of x and their in-
teractions with other individuals. These interactions are
measured by an interaction kernel, which is a function of
how phenotypically different they are. For a population
of size n, this dependence is explicitly given by

b(x,
n∑

i=1
V (x−xi)) (1)

d(x,

n∑
i=1

U(x−xi)), (2)

where b and d are the birth and death rates, respec-
tively, and V and U are the interaction kernels affecting
reproduction and mortality. We may now question the
generality of this approach and which ways of defining
such rates are not being considered by writing the de-
pendence as above.
Symmetry w.r.t. non-focal phenotypes is a first property
that is worth discussing. Indeed, both birth and death
rates with trait dependence given by Eq. (1)-Eq. (2) are
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symmetric w.r.t. non-focal traits, which has intricate im-
plications derived from set theory that we explore in the
following sections.

Elements of set theory
We are interested in determining what are the proper-
ties of a real function h such that there exist functions f
and g satisfying

f(x,
n∑

i=1
g(x−yi)) = h(x,y1, ...,yn) (3)

for all x,y1, ..,yn ∈ Rℓ and n ≥ 2. We claim that Eq. (3)
holds, for some functions f and g, if and only if h is sym-
metric w.r.t. y1, ...,yn, that is, its value is the same inde-
pendently of the order of its arguments. For example, a
function f(x1,x2) taking two arguments is a symmetric
function if and only if f(x1,x2) = f(x2,x1) for all x1 and
x2 such that (x1,x2) and (x2,x1) are in the domain of
f . More relevant to our case, we can see that a function
of the form

n∑
i=1

g(x−xi) (4)

is also symmetric w.r.t. x1, ...,xn. To begin the thought
process behind the main theorems in this work, we
present some examples with n = 2.

Example 1 (A functional equation). Suppose

f(x+y) = ax+ by (5)

holds for some function f : R → R and a,b ∈ R. Given
the function f : R2 → R defined as f(x,y) ≡ f(x + y)
we see that it is symmetric w.r.t. x and y, since x + y =
y +x. Then, it follows that

ax+ by = f(x,y) = f(y,x) = ay + bx (6)

and thus a = b. Hence, if a ̸= b, Eq. (5) does not hold for
any function f . In some sense, symmetry imposed by
f(x,y) is extended to ax + by. A more straightforward
way to see this is by noting that f(0 + 0) = f(1 − 1) im-
plies a = b.

Example 2 (Symmetry necessity). Let h(x,y,z) = ax+
by + cz, where a,b,c ∈ R. Then Eq. (3) becomes

f(x,g(x−y)+g(x−z)) = ax+ by + cz. (7)

However, from Example 1, f(x,y,z) ≡ f(x,g(x − y) +
g(x−z)) is symmetric w.r.t. y and z and so

ax+ by + cz = f(x,g(x−y)+g(x−z))
= f(x,g(x−z)+g(x−y)) = ax+ bz + cy

(8)

thus f and g exist if and only if b = c. In particular, take
g(w) = w and f(u,v) = au + b(2u − v). For n > 2, the
reasoning is similar. This example aims to suggest that

some kind of symmetry in h in Eq. (3) is necessary. In
fact, since f is symmetric w.r.t. y1, ...,yn, h is neces-
sarily symmetric w.r.t. the same variables, thus we now
focus on the reverse implication.

Example 3 (Symmetry sufficiency). We now illustrate
that symmetry of h might not only be necessary, but also
sufficient to guarantee the existence of f and g such
that Eq. (3) holds. Since isolated dependence on x is
granted from f , we drop it from h and assume the non-
linear case h(y,z) = y2 +z2, which is symmetric w.r.t. y
and z. Thus

f(x,g(x−y)+g(x−z)) = y2 +z2. (9)

Here, the answer is not trivial and further machinery is
needed. With a suitable change of variables, we can
rewrite Eq. (9) as

f(x,g(y)+g(z)) = (y +x)2 +(z +x)2. (10)

Since we cannot explicitly impose dependence of g on
variable x, the only way to satisfy Eq. (10) is to find a
function g such that the sum g(y)+g(z) uniquely deter-
mines the unordered pair (y,z). This would then guar-
antee explicit dependence of f on (y,z), simplifying the
problem. Note that the unordered property is a conse-
quence of symmetry. Ideally, if y,z ∈ R, we would like
g to be a function between R and any set with the car-
dinality of the continuum (cardinality of R, usually de-
noted by 2ℵ0 ), such that any two sums in that set give
distinct values. Such a set and bijection are not trivial to
construct and their existence relies on Zorn’s Lemma,
discussed next.

On the existence of a basis and the Axiom of Choice.
By interpreting the real numbers as a vector space over
some set, constructing a basis for R and defining g in
Eq. (10) as the bijection between R and its basis leads
to the unique description of the unordered pair (y,z),
since g(y) and g(z) are linearly independent over the
set we build our basis on. In general, this would then
allow us to take the right-hand side of Eq. (3) as any
symmetric function w.r.t. non-focal traits.
One way to do this is to consider R as a vector space
over the rationals, where a basis is a collection B of real
numbers such that every real number is a rational linear
combination of numbers βi ∈ B in precisely one way,
that is, every real number α has a unique representation
of the form

α =
m∑

i=1
qiβi, (11)

where qi is rational and m depends on α. This set is
also known as the Hamel basis for R (Hamel, 1905).
Note that any Hamel basis contains, at most, one ratio-
nal number (Figure 1a). Considered as a vector space
over Q, R has uncountable dimension, so it cannot be
spanned by countably many vectors. Hamel bases have
been studied in the context of additive functions (Jones,

Berkemeier & Page | Unifying evolutionary dynamics: a set theory exploration of symmetry and interaction | 3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.27.559729doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559729
http://creativecommons.org/licenses/by/4.0/


Hamel
basis

(a) (b)

Figure 1. Hamel bases and Axiom of Choice.
(a) Hamel bases contain, at most, one rational number (in red). (b) The choice
function takes exactly one element from each set α (Yorgey, 2014).

1942; Boros and Daróczy, 2006), including the discus-
sion of the general solution of Cauchy’s functional equa-
tion (Aczél and Erdős, 1965). The existence of such a
basis depends on the Axiom of Choice or, more directly,
Zorn’s Lemma (Zermelo, 1904; Kuratowski, 1922; Zorn,
1935). In the following, we are then considering an ax-
iomatic system under Zermelo-Fraenkel set theory with
the Axiom of Choice (ZFC) (Zermelo, 1908; Fraenkel
et al., 1973).
The Axiom of Choice states that for any family A of
nonempty sets, there exists a set that contains exactly
one element in common with each of the nonempty sets.
In other words, for any family A of nonempty sets, there
exists a choice function

F : A →
⋃

α∈A
α (12)

such that for every α ∈ A, F (α) ∈ α (Figure 1b). These
statements are equivalent to a third “version” of the Ax-
iom of Choice:

Zorn’s Lemma (Axiom of Choice). If X is a partially
ordered set such that every chain in X has an upper
bound, then X has a maximal element.

It is a known result that Zorn’s Lemma, which relies on
the assumption of the Axiom of Choice, yields that ev-
ery vector space has a basis (Halpern, 1966; Bleicher,
1967). In the Supplementary Information, we sketch the
proof of that result for R.
Going back to Example 3, with g as the bijection
between R and its Hamel basis B, we have that
(g(y),g(z)) ≡ (yB,zB) ∈ B × B. Hence, since B is a
basis of R, yB and zB are linearly independent over the
rationals and the sum g(y) + g(z) = yB + zB uniquely
defines a real number. Thus it is possible to rewrite the
dependence f in Eq. (10) as

f(x,g(y)+g(z)) ≡ h(x,y +x,z +x), (13)

which is symmetric w.r.t. y and z. A numerical formula-
tion of f and g is discussed later in Example 4, where
we explicitly solve Example 3. Next, we present the
main implications of this argument.

Results
Recall the general phenotype-dependent expressions
of birth and death rates in Champagnat et al. (2006),

b(x,
n∑

i=1
V (x−xi)) (14)

d(x,
n∑

i=1
U(x−xi)). (15)

Motivated by the discussion in the previous section, we
present the main theorems on symmetry derived from a
phenotype-dependence like Eq. (14)-Eq. (15).

Main theorems
Under the Axiom of Choice and via a set theory argu-
ment, one can show that the birth and death rates can
be taken to be any symmetric functions.

Theorem 1 (General symmetry).
Assume the Axiom of Choice. For all x,x1, ..,xn ∈ Rℓ

and n ≥ 2, there exist functions f and g such that

f(x,
n∑

i=1
g(x−xi)) = h(x,x1, ...,xn) (16)

holds if and only if h is symmetric w.r.t. x1, ...,xn.

Proof. (⇒) First, assume that, for some functions f , g
and h, Eq. (16) holds for all x,x1, ...,xn ∈ Rℓ. Since
f is symmetric w.r.t. x1, ...,xn, h is symmetric w.r.t. the
same variables. (⇐) Now, take ℓ = 1 for simplicity and
let h be any symmetric function. Considering a suitable
change of variables, rewrite Eq. (16) as

f(x,

n∑
i=1

g(xi)) = h(x,x1 +x, ...,xn +x). (17)

Let g be the bijection between R and its Hamel ba-
sis, B, which exists according to Zorn’s Lemma and
has the cardinality of the continuum. Then,

∑n
i=1 g(xi)

uniquely determines the unordered n-tuple (x1, ...,xn),
since {g(x)}x are linearly independent over Q. Hence,
with w =

∑n
i=1 g(xi), define

f(x,w) = h(x,x1 +x, ...,xn +x). (18)

Reverting the change of variables, we get that Eq. (16)
holds for all x,x1, ...,xn ∈ R. A similar argument yields
the same result for any dimension ℓ. ■

According to Theorem 1 and by interpreting f and g as
the event rate and respective interaction kernel, Cham-
pagnat’s approach is only considering birth and death
rates which are symmetric w.r.t. the trait values of the
non-focal individuals, leaving a plethora of cases to be
explored. We now ask which of them could be of rel-
evant interest to evolutionary dynamics. Furthermore,
the highly non-constructive nature of the proof of sym-
metry sufficiency (⇐) may be rather uninteresting to the
applied mathematician. Therefore, in addition to the
previous limitation, Champagnat’s framework is limited
to a very particular type of symmetry.
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Constructible symmetry
A way to avoid the non-constructive scenario and the
Axiom of Choice is to relax slightly our phenotype re-
quirements. If we consider the traits to be vectors
of rational numbers, a more direct approach may be
taken. Indeed, from a computational perspective, all
we really manage in simulations are approximations
to real numbers, which can be seen as rational num-
bers (to machine error, in non-symbolic mathematics
(Zazkis, 2005; Obersteiner and Hofreiter, 2017; Kris-
tiansen, 2017; Georgiev et al., 2021)). Therefore, on
rational domains, we have a weaker but constructible
version of Theorem 1.

Theorem 2 (Constructible symmetry).
For all x,x1, ..,xn ∈ Qℓ and n ≥ 2, there exist con-
structible functions f and g such that

f(x,
n∑

i=1
g(x−xi)) = h(x,x1, ...,xn) (19)

holds if and only if h is symmetric w.r.t. x1, ...,xn.

Proof. (⇒) Similar to the proof of Theorem 1. (⇐) Take
ℓ = 1 for simplicity. Considering the change of variables
Eq. (17), we are now interested in finding a constructible
function g such that

∑n
i=1 g(xi) is uniquely defined for

each n-tuple (x1, ...,xn), i.e, such that the sum is in-
jective w.r.t. the same tuple. Take γ : Q → N to be the
bijection between Q and N. We avoid determining an
explicit analytical formula for γ, arguing instead that this
is directly programmable with a Cantor pairing function
(Szudzik, 2006; Lisi, 2007). If g(xi) = nγ(xi), the sum

n∑
i=1

g(xi) =
n∑

i=1
nγ(xi) (20)

is unique for each unordered tuple of integers
(γ(x1), ...,γ(xn)) and thus for (x1, ...,xn). To see this,
let ki ≡ γ(xi) ∈ N. We are then looking for an injective
function σ : N → Nn such that

σ

(
n∑

i=1
nki

)
= p(k1, ...,kn), (21)

where p : Nn → Nn is any permutation of (k1, ...,kn).
Then, due to the uniqueness of base-n representations,
we have that such σ exists. In particular, consider the
number Sn ≡

∑n
i=1 nki written in base-n, i.e,

Sn =
n∑

i=1
nki = (s1s2 · · ·sm)n. (22)

Assume first that {ki} are not all equal to a specific
value. Then, we have that

∑m
j=1 sj = n and the number

sj gives precisely the number of terms with exponent
j = ki that appear in

∑n
i=1 nki . If, however, the sum

is itself a power of n (ki = k, ∀i, for some k), then we
take ki = logn(Sn/n), ∀i. Hence, we have a unique de-
scription of the n-tuple via the sum. Writing f in terms

of σ and applying γ−1 to p(k1, ...,kn) implies an explicit
dependence on the tuple (x1, ..,xn) ∈ Qn. A similar ar-
gument yields the same result for any dimension ℓ. ■

Following Theorem 2, a natural extension would be to
consider any countable subset of R, beyond Q. For ex-
ample, the subset of real algebraic numbers, which is
countable and contains Q, could be of particular inter-
est, since these represent roots of non-zero polynomials
with rational coefficients, which may appear when mod-
elling certain traits. The previous argument would then
rely entirely on the constructible nature of the bijection
between any countable set and N. For computational
purposes, however, rational traits seem to be enough.

Further examples
Example 4 (Solving Example 3). Consider the one-trait
scenario (ℓ = 1) in a population with three individuals.
Let h : Q → R be defined as h(x,y,z) = y2 + z2. We
now provide explicit functions f and g such that

f(x,g(x−y)+g(x−z)) = y2 +z2 (23)

for all x,y,z ∈ Q. Again, a suitable change of variables
allows us to rewrite the previous identity as

f(x,g(y)+g(z)) = (y +x)2 +(z +x)2. (24)

Let γ : Q → N be the bijection between Q and N, g(x) =
2γ(x) and fix (k1,k2) ≡ (γ(y),γ(z)). We aim to find an
injective function σ : N → N2 such that

σ(2k1 +2k2) = (max{k1,k2},min{k1,k2}). (25)

Notice first that

2max{k1,k2} < 2k1 +2k2 ≤ 2max{k1,k2}+1 (26)

implies

max{k1,k2} < log2

(
2k1 +2k2

)
≤ max{k1,k2}+1,

(27)

and so log2
(
2k1 +2k2

)
falls between two successive in-

tegers. Hence, with k ≡ 2k1 +2k2 and k1 ̸= k2, we have{
max{k1,k2} = ⌊log2(k)⌋ ,

min{k1,k2} =
⌊
log2

(
k −2⌊log2(k)⌋

)⌋
,

(28)

where ⌊·⌋ is the floor function, that is, ⌊x⌋ gives the
greatest integer less than or equal to x. If k1 = k2, we
have that k = 2k1+1 and thus log2 (k/2) = k1 ∈N. Com-
bining these two cases, we may define σ as

σ(k) =
(

⌊log2(k)⌋−χN (log2(k/2))⌊
log2

(
k −2⌊log2(k)⌋−χN(log2(k/2))

)⌋) (29)

≡ (σ1(k),σ2(k))T , (30)
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where χN is the indicator function of set N. Hence,
Eq. (25) is satisfied. Finally, with g(w) = 2γ(w), we de-
fine f as

f(u,v) =
(
γ−1 [σ1(v)]+u

)2 +
(
γ−1 [σ2(v)]+u

)2
.
(31)

Hence,

f(x,g(y)+g(z))

= f(x,2γ(y) +2γ(z)) (32)

=
∑

i=1,2

(
γ−1

[
σi

(
2γ(y) +2γ(z)

)]
+x
)2

(33)

= (y +x)2 +(z +x)2 (34)

= h(x,y +x,z +x). (35)

Reverting the change of variables, we have found f and
g such that Eq. (23) holds for all rationals.

We now aim to find “reasonable” examples, in the sense
of having some level of literature background and appli-
cation, of birth and death rates that not only contrast
with Champagnat’s framework, but also suggest a po-
tentially more general approach to unifying evolutionary
dynamics. Based on these examples, or class of exam-
ples, we propose an expansion of the modelling in that
paper.

Evolutionary games on graphs
In evolutionary dynamics, games dependent on cooper-
ativity in a graph structure are often accepted as realis-
tic approximations to describing the dynamics of popu-
lations. Thus we now aim to frame evolutionary graph
theory in Champagnat’s framework and understand its
limitations through examples motivated by other works
(Ohtsuki et al., 2006; Allen et al., 2013, 2017).

Asymmetric interactions. As discussed below, different
degrees and weights of vertices representing individ-
uals might suggest some overall asymmetric growth
rates, regarding traits and interactions between spe-
cific individuals. For example, the graphs in Figure 2
are a simple first case where Champagnat’s approach
could fail, due to the asymmetric nature of the incom-
plete Graph 2. Considering the focal individual with trait
x1, its dynamics would only be influenced by the indi-
vidual with trait x2, as suggested in Graph 2, leading to
an interaction kernel equation of the form

f(x1,g(x1 −x2)+g(x1 −x3)) = h(x1,x2), (36)

which is not possible due to the symmetry w.r.t. x2 and
x3 imposed by the left-hand side. Considering the de-
gree of each vertex as an extra trait, however, could
solve the mathematical conundrum in Eq. (36), guar-
anteeing non-focal trait symmetry in some sense, which
we discuss next for some examples. Notice also that,
even if a specific permutation of the unordered tuple
(x2,x3) was picked, information on individuals’ labels
is required to handle asymmetry, which we discuss in
the following.

Graph 1 Graph 2

Figure 2. Two evolutionary graphs.
In a population in which interaction is defined by incomplete graphs, asymmetry
can be overturned by a redefinition of the phenotypic landscape.

Incomplete graphs. Consider any graph G of order n
with vertices and edges representing different indi-
viduals and their potential interactions, respectively.
We assume that the graph is fixed for the duration
of the evolutionary dynamics and that the edges are
equally weighted. In the one-shot continuous Prisoner’s
Dilemma (Poundstone, 1993), a player with cooperativ-
ity x pays a cost C(x) to produce a benefit B(x) for
the other player. Here, we consider the game with more
players. Therefore, the payoff of a player i with cooper-
ativity xi is

Pi =
∑

j : ij∈E

[B(xj)−C(xi)], (37)

where E is the edge set of the graph G and ij is the
edge connecting players i and j. If G is complete, the
sum in Eq. (37) is over all j. The fitness of player i, fi, is
given by a constant term, denoting the baseline fitness,
plus the payoff that arises from the game, that is,

fi ≡ 1−ϕ+ϕPi, (38)

where ϕ measures the intensity of selection. For sim-
plicity, and without loss of generality, we consider strong
selection, ϕ = 1, meaning that the payoff is large com-
pared to the baseline fitness. Hence, fi = Pi. With-
out delving into much detail on the biological meaning
of fitness and its connection to event rates (Wasser-
sug and Wassersug, 1986; Smith et al., 1989; Bertram
and Masel, 2019), we assume that, independently of
the chosen update rule (see note below), both birth and
death rates of a focal individual i depend, in some way,
on its fitness. Therefore, taking the cooperativity as a
trait, we expect the following dependence

b(xi,
n∑

j=1
V (xi −xj)) = b̃(xi,fi)

= b̃(xi,
∑

j : ij∈E

[B(xj)−C(xi)]), (39)

where b̃ is related to b and V in a specific way. Simi-
larly for the death rate d. The question is now whether
fi is symmetric w.r.t. the other cooperativities xj , j ̸= i.
In general, this is not necessarily true, as seen in the
example of Graph 2 (Figure 2), by noting that, for ex-
ample, f1 = B(x2) − C(x1) ̸= B(x3) − C(x1), ∀x2,x3.
However, a phenotype redefinition based on the graph’s
connectivity could hint at a possible mathematical solu-
tion. Notice that, since we have access to the edge set
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E, rewriting Eq. (37) as

fi = Pi =
∑

j : ij∈E

[B(xj)−C(xi)]

=
n∑

j=1
[B(xj)−C(xi)]χE(ij) (40)

suggests that some extra trait regarding the edge set
is needed to guarantee symmetry. Due to Theorem 1,
Eq. (39) is always possible as long as Eq. (40) is sym-
metric w.r.t. non-focal traits. However, the edge set E
must be somehow obtained from the phenotypes, in or-
der to be consistent with the dependence in Eq. (1)-
Eq. (2). In other words, we want to define the set
{j : ij ∈ E} in terms of a certain trait of the phenotype.
We now question whether there is a way of relabelling
the graph such that, for any vertex i, with corresponding
new label pi ∈ N, there exists a set L for which

χL(pi −pj) =
{

1 if ij ∈ E,

0 if ij ̸∈ E.
(41)

The most straightforward thing to do is take the labels
p1, ...,pn to be so far apart that no difference pi − pj

is repeated, which condition is reminiscent of a Sidon
sequence (Erdos and Turán, 1941; O’Bryant, 2004). In-
deed, we can take pi = 2i. If 2a −2b = 2c −2d, then we
also have 2a + 2b = 2c + 2d, and by the uniqueness of
binary representations, we must have a = c and b = d.
Now, let

L = {2i −2j : ij ∈ E}, (42)

where E is the edge set of the graph. Then Eq. (41)
holds. Hence, considering pi = 2i as a second trait in
the phenotype, we can rewrite Eq. (40) as

fi =
∑

j : ij∈E

[B(xj)−C(xi)]

=
n∑

j=1
[B(xj)−C(xi)]χL(pi −pj). (43)

Therefore, it becomes clear that fitness fi, written as
a function of two traits (cooperativity and vertex de-
gree), is symmetric w.r.t. similar non-focal traits and thus
Champagnat’s framework can be extended to incom-
plete graphs. Going back to the example Eq. (36), h
can now be redefined as

f

[(
x1
p1

)
,g

[(
x1 −x2
p1 −p2

)]
+g

[(
x1 −x3
p1 −p3

)]]
(44)

≡ h

[(
x1
p1

)
,

(
x2
p2

)
,

(
x3
p3

)]
(45)

≡ h

[(
x1
p1

)
,x2χL(p1 −p2),x3χL(p1 −p3)

]
, (46)

which works for any other focal individual. More gener-
ally, we may consider weighted graphs.

Weighted graphs. In Allen et al. (2017), the popula-
tion structure is represented by a weighted, undirected
graph G with edge weights wij . The weighted degree of
a vertex i is defined as wi =

∑
j∈G wij . These weights

determine the frequency of game interaction and the
probability of replacement between vertices i and j,
considering a death-birth update rule. Here, the notion
of cooperation in a game is simplified to two types of
individuals, characterised by

si =
{

1 if i is a cooperator,
0 if i is a defector.

(47)

Again, we can think of si as a trait. Considering the
donation game, the payoff matrix is defined as

( C D
C b− c −c
D b 0

)
, (48)

where C and D represent cooperators and defectors,
respectively, and b,c > 0 are the benefit and cost values.
Then, the edge-weighted average payoff of vertex i is
given by

Pi = −csi + b
∑
j∈G

wijsj

wi
. (49)

The fitness of individual i, which is interpreted as birth
rate, is then given by fi = 1 + δPi, where δ > 0 quanti-
fies the strength of selection. Since the weights wij are
fixed (or interpreted as extra traits), we have that, as
long as at least two weights are different, Eq. (49) is not
symmetric w.r.t non-focal types sj . Hence, evolutionary
dynamics on weighted graphs are also not covered by
Champagnat’s framework, unless we consider, again,
the connectivity between individuals as traits, which re-
laxes the definition of asymmetry.
We have then concluded that, from an evolutionary
graph theory perspective, the framework in Champag-
nat et al. (2006) is restricted to symmetric games on
well-mixed populations, unless some assumption is
made on the phenotype definition to include the edge
set asymmetries of the interaction graph.

A note on update rules. Evolutionary dynamics depend
on update rules upon which these games are settled. In
Ohtsuki et al. (2006), for example, a few update rules
are considered: death-birth, birth-death and “imitation”
updating. However, it may be quite a challenge to adapt
them in Champagnat’s framework. The key difference is
that Champagnat uses the values of a sequence of ran-
dom variables uniformly distributed in [0,1] to select the
type of birth or death events, based on the event rates,
a methodology not that dissimilar to Gillespie’s algo-
rithm (Gillespie, 1976, 1977). Therefore, they consider
a birth-mutation-death process that follows no particular
order and where there is no explicit connection between
two consecutive events, which may, in some sense, be
more realistic. Setting extremely high or low event rates
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in an artificial manner and introducing specific traits for
positioning and number of neighbours might approxi-
mate common update rules in evolutionary graph dy-
namics. Nonetheless, our symmetry argument remains
independent of this adaptation.

Solving asymmetry
In the previous examples, we have shown that the in-
clusion of a structure-dependent trait in the phenotypic
landscape of the population allows for an adjustment of
asymmetric frameworks to be accounted for by Cham-
pagnat’s symmetric framework. While seemingly a very
artificial argument, incomplete graphs revealed the ne-
cessity for the existence of a well-defined trait based
on the graph portrait of interaction, in order to guaran-
tee symmetry. The a priori knowledge of the interaction
structure is key in order to apply the main framework.
We call this trait addition the Sidon-extension of non-
focal phenotypes to Rℓ+1.
The previous examples Eq. (37) and Eq. (49) are but a
small class of very specific linear asymmetry. We will
see, however, that any asymmetric functions w.r.t non-
focal traits can still fit into Champagnat’s framework un-
der a suitable transformation.

Example 5 (Symmetrizations). Consider the following
asymmetric and non-linear function h(y,z). In general,
such a function could not be represented by an interac-
tion kernel as in Champagnat et al. (2006). However, a
symmetrization of h based on the relative positioning of
individuals (or phenotypes) would extend the previous
arguments to any asymmetric function. Pairwise adding
extra positional traits pz > py, we may write a symmetric
version of h as follows

hS(y,z) = h(y,z)+H(py −pz)(h(z,y)−h(y,z)) (50)

where y = (y,py)T , z = (z,pz)T , and H is the Heav-
iside step function. Indeed hS is now symmetric w.r.t.
y and z, and Theorem 1 applies. A relatively straight-
forward generalisation to any n and ℓ is then possi-
ble. Alternative and general symmetrization techniques
(e.g., Steiner symmetrization) could further refine the
definition of hS and consequent applicability of Cham-
pagnat’s framework to general functions (Brock, 1995;
Brock and Solynin, 2000). For the purpose of this work,
however, we confine our approach to a simple applica-
tion of boolean functions to construct our generalisation.

An important note is that, while the primary phenotypic
space in Rℓ fails in the case of incomplete or weighted
graphs, its Sidon-extension guarantees the symmetry
imposed by the interaction kernels. This is only possible
because we are considering vector-wise (or, individual-
based) symmetry w.r.t. non-focal traits, and the inclu-
sion of a multiplicative boolean factor in the definition
of a general h. Without this assumption, Champagnat’s
framework generally fails in asymmetric scenarios. We
may then write a generalised version of Theorem 1.

Theorem 3 (Symmetric asymmetry).
Assume the Axiom of Choice, and let

hS(x,x1, ...,xn) = h(x,x1, ...,xn)+S(x,x1, ...,xn)
(51)

for some symmetrizing function S, where xi ∈ Rℓ+1 is a
Sidon-extension of vector xi with unique parameter pi,
∀i. Then, for all x,x1, ..,xn ∈ Rℓ and n ≥ 2, there exist
functions f , g and S such that

f(x,
n∑

i=1
g(x−xi)) = hS(x,x1, ...,xn) (52)

holds for any function h.

Proof. Let h : Rn+1 ×Rℓ → R be any function. Take
{pi} to be a Sidon sequence (labelling traits) and con-
sider the list of all distinct pairwise combinations of pi-
values. There will be

(n
2
)

such pairs. For each pair
(pi,pj), we define a switch term that accounts for the
difference between the original function and the func-
tion with xi and xj switched. If the original function
is h(x,x1, ...,xn), the switch term for (xi,xj) maps
xi → xj and xj → xi. By using Heaviside step functions
H(pi − pj) for each pair, we determine whether or not
to apply the switch term. Finally, summing up all these
terms weighted by their respective Heaviside functions
we guarantee the existence of a function S that sym-
metrizes hS , for any h. The existence of f and g is then
a direct consequence of Theorem 1. ■

Discussion
In this work, we have explored the realms of logic and
set theory to extrapolate an analysis of the symmetry of
the interaction kernel definition within a well-established
model of evolutionary dynamics (Champagnat et al.,
2006).
By invoking the Axiom of Choice, and utilising a math-
ematical discourse grounded in Zorn’s Lemma, we se-
cured the existence of a Hamel basis. The bijection of
this basis to the real numbers enabled us to uniquely
determine the sum terms in the dependence of the in-
teraction kernel. The inherently non-constructive na-
ture of this approach further propelled our efforts to ex-
amine the symmetry argument across countable sets.
This analysis ultimately culminated in two versions of
our central theorems pertaining to the overall symmetry
of interaction kernels in relation to non-focal traits within
an individual’s phenotype (Theorems 1 and 2).
This revelation led us to infer that the framework out-
lined in Champagnat et al. (2006), although limited to
birth and death rate functions that maintain symmetry
w.r.t. non-focal traits, can be adapted to accommodate
any form of symmetry. Essentially, we illustrated that
the event rates could indeed adopt any symmetric func-
tions. Nevertheless, the feasibility of constructing such
functions is heavily contingent on the trait values – fail-
ing in the real case but possible, in general, within any
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countable subset of Rℓ. In the latter scenario, we pre-
sented a practical exemplification in the case of nonlin-
ear symmetry.
Ultimately, we ventured into an examination of the sym-
metry of evolutionary games on graphs. We analysed
incomplete and weighted population dynamics graphs
in cooperative games, as well as the case of general
individual-based asymmetric interaction. We concluded
that symmetry can be ensured, provided that individual
labelling is incorporated as a component of the pheno-
type of different individuals (Theorem 3).
Our exploration into the subtleties of symmetry within
interaction kernels and the application of set theory no-
tably enhances the modelling and understanding of evo-
lutionary dynamics. By uncovering the roles and lim-
itations of symmetry in shaping interactions between
individuals and phenotypic variations, we open a new
pathway for a deeper and more nuanced understand-
ing of biological systems. The set theory framework
further contributes to the mathematical foundations of
these models, allowing for more sophisticated and de-
tailed interpretations. This research serves as a crucial
stepping stone in bringing about more refined and pre-
dictive models of evolutionary processes, which will be
instrumental in furthering our understanding of adaptive
evolution and cooperative behaviours within complex bi-
ological networks.
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Supplementary Information

A note on Zorn’s Lemma
In this section, we sketch a proof that R has a basis, under the Axiom of Choice and following Zorn’s Lemma, and
discuss the existence of the critical bijection g between R and its Hamel basis. See Halpern (1966); Bleicher (1967)
for further reading.

First, we recall some definitions from set theory (Harzheim, 2005)

• A partially ordered set is a set X together with an ordering ≤ of the elements of X that is transitive (if x ≤ y
and y ≤ z then x ≤ z) and antisymmetric (if x ≤ y and y ≤ x then x = y);

• A totally ordered subset of X is a set Y ⊆ X such that, ∀y,z ∈ Y , either y ≤ z or z ≤ y;

• A chain Y in a partially ordered set X is a totally ordered subset of X;

• An upper bound for a subset Y of a partially ordered set X is an element u such that y ≤ u for every y ∈ Y ;

• Finally, a maximal element in a partially ordered set X is an element x0 such that the only element x ∈ X
satisfying x0 ≤ x is x0 itself.

The main result follows.

Theorem 4 (R has a basis). Under the Axiom of Choice, there exists a basis of R.

Proof. (Sketch) Recall that B is defined as the collection of real numbers such that every real number is a rational
linear combination of numbers βi ∈ B in precisely one way, that is, every real number α has a unique representation
of the form

α =
m∑

i=1
qiβi, (S1)

where qi is rational and m depends on α. It suffices to show that B exists.

With B as a candidate Q-basis of R, the objects we are interested in are subsets of R that are linearly independent
over Q. First, we note that a maximal linearly independent subset of R, where by “maximal” we mean that the set is
not contained in any larger linearly independent set, spans the whole of R. If it did not, we could just pick an element
that did not belong to its linear span and add it to the linearly independent set, redefining maximality. Although
seemingly an interminable process, Zorn’s lemma tells us that it ends. Thus, we are looking at the set of all linearly
independent subsets of R, with the partial order ⊂.

In order to apply Zorn’s Lemma, we then need to check that every chain has an upper bound. Imagine that we have
a collection Y of linearly independent subsets of R and that, for any two of those subsets, one is contained in the
other. By definition, the upper bound of such a chain is a set that contains all the sets in Y , so it has to contain their
union. If we take the upper bound as the union, it should be linearly independent. Indeed, if α1, . . . ,αn belong to
the union, then each αi belongs to some linearly independent set βi ∈ Y . Since Y is a chain, one of these sets βi

contains all the others. If that is βj , then the linear independence of βj implies that no non-trivial linear combination
of α1, . . . ,αn can be zero, which proves that the union of the sets in Y is linearly independent. Therefore, by Zorn’s
Lemma, there is a maximal linearly independent set. Such a set forms a basis for R. ■

Now, in order to define g in Eq. (3) as the bijection between R and its Hamel basis, it is important to show that such a
basis has the cardinality of the continuum. Let the cardinality of some Hamel basis be κ. Since the cardinality of the
set of coefficients is ℵ0 (cardinality of Q), we have ℵ0κ elements using each basis element of the form q1β1, ℵ2

0κ2

elements using two basis elements q1β1 + q2β2, and so on. Hence, the span of the basis has cardinality given by

ℵ0κ+ℵ2
0κ2 +ℵ3

0κ3 + · · · = κ, (S2)

where we used the fact that ℵ0 is the smallest infinite cardinal (the product of two infinite cardinals is equal to
whichever is bigger, thus ℵ0κ = κ). Since the span is R, we have κ = 2ℵ0 and the bijection exists.

References
James D Halpern. Bases in vector spaces and the axiom of choice. Proceedings of the American Mathematical Society, 17(3):670–673, 1966.
MN Bleicher. Some theorems on vector spaces and the axiom of choice. Journal of Symbolic Logic, 32(2), 1967.
Egbert Harzheim. Ordered sets, volume 7. Springer Science & Business Media, 2005.

Berkemeier & Page | Unifying evolutionary dynamics: a set theory exploration of symmetry and interaction Supplementary Information | 1


