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A B S T R A C T

Understanding pattern formation driven by cell–cell interactions has been a significant theme in cellular
biology for many years. In particular, due to their implications within many biological contexts, lateral-
inhibition mechanisms present in the Notch-Delta signalling pathway led to an extensive discussion between
biologists and mathematicians. Deterministic and stochastic models have been developed as a consequence
of this discussion, some of which address long-range signalling by considering cell protrusions reaching non-
neighbouring cells. The dynamics of such signalling systems reveal intricate properties of the coupling terms
involved in these models. In this work, we investigate the advantages and drawbacks of a single-parameter
long-range signalling model across diverse scenarios. By employing linear and multi-scale analyses, we discover
that pattern selection is not only partially explained but also depends on nonlinear effects that extend beyond
the scope of these analytical techniques.

1. Introduction

In epithelial tissue, depending on the nature of the contact between
cells, the Notch-Delta signalling pathway leads to fundamentally differ-
ent patterns [1–3]. In highly packed epithelial layers, some cells have
the ability to create extensions of themselves, developing protrusions
that reach non-neighbouring cells and yielding a new and fundamental
factor in the signalling dynamics. These basal actin-based filopodia are
elongated and oriented in different directions, extending signalling to
second or third neighbour cells [4–8].

In recent years, long-range signalling via filopodia has been shown
to significantly impact the distribution and sparse patterning of sensory
organ precursor (SOP) cells in the fly notum [9–11]. In other work,
spatiotemporal patterns of spinal neuron differentiation were revealed
to be mediated by basal protrusions [12]. In contrast to the frequently
observed short-ranged patterns induced by short-range signalling, cell
protrusions result in sparser SOP cell patterning.

The stochastic nature of these biological systems crucially affects
patterning. For example, noise arising from dynamic protrusions has
been shown to have a significant role in pattern refinement when
studying the organisation of bristles on the Drosophila melanogaster
notum [9]. A cellular automaton model of cell–cell signalling revealed
that rule-dependent structured noise also triggers refined and biased
patterning [10], hinting at the self-organising nature of such systems.
Intrinsic noise, driven by stochastic gene expression, has been studied
via the Chemical Langevin Equation [13] and shown to directly affect
juxtacrine-based pattern formation [14].
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In addition to constructing realistic long-range signalling models
capable of numerically describing long-range patterning, linear stability
analysis (LSA) has revealed inherent characteristics of lateral inhibition
models [15–17]. Biased and long-range signalling was also studied
in [18], where weight-based coupling functions were considered for
several one-dimensional signalling systems. We aim to partially extend
this work by studying the two-dimensional hexagonal array under
specific signalling weights.

In 1996, Joanne Collier and colleagues developed the first model
of Notch-mediated lateral inhibition [19]. In this work, the authors
considered purely juxtacrine signalling dynamics, where the signalling
cell and the target cell are in direct physical contact. We define a model
of long-range Notch-Delta signalling, which is a relative weight-based
extension of the original Collier model, and name it the 𝜖-Collier model.
We introduce a weighting parameter 𝜖 that relatively weights juxtacrine
and long-range signalling contributions, creating a complex non-local
signalling network.

Under different filopodium behaviour and lifespan assumptions, one
can explore the robustness of the extended Collier model via LSA,
providing a general framework for analysing autonomous systems of
signalling cells, as detailed in Supplementary Note 1 (SN1). Further-
more, such a parameterised model allows us to investigate the limits
on cell coupling sufficient to obtain long-range patterns. In parallel,
we explore the effects of stochastic filopodium dynamics on patterning.
Finally, we expand some of the techniques from LSA to describe a
general framework for multiple-scale methods and weakly nonlinear
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stability analysis (WNSA) of coupled and decoupled dynamical systems
(SN2).

In this paper, we first present the Collier model of Notch-Delta
signalling, followed by its extension to long-range signalling, which we
call the 𝜖-Collier model. We then perform a linear stability analysis
of this system. The results of the LSA are compared with numerical
simulations. The cases of longer/oriented protrusions and stochastic
protrusions are analysed. In the latter case, we assume that protrusions
link and unlink at random. Stochastic protrusions can lead to pattern
refinement over time. We perform a numerical bifurcation analysis of
the 𝜖-Collier model, showing which modes are expected to grow near
a bifurcation, and show that these accurately predict the results of
numerical simulations there. Finally, we present a multiscale method
for analysing weakly nonlinear dynamics, and show that it is difficult
to apply to this system.

2. Main methods

2.1. Lateral inhibition

We consider a periodic 𝑁 ×𝑀 hexagonal lattice (hexagonal torus),
where each cell has 6 neighbouring cells (see Fig. 1(a)). For a given cell,
we assume juxtacrine signalling occurs with all 6 of its neighbours via
the usual Collier model [19]. Here, the authors used experimental data
to build an ordinary differential equation (ODE) model of the feedback
loop between two adjacent cells induced by Notch signalling (lateral
inhibition). The model consists of a system of coupled ODEs per cell.
Denoting by 𝑛𝑖 and 𝑑𝑖 the levels of Notch and Delta activity in cell 𝑖,
we have the following system

𝑑
𝑑𝑡

𝑛𝑖 = 𝑓 (⟨𝑑𝑖⟩) − 𝑛𝑖 (1)
𝑑
𝑑𝑡

𝑑𝑖 = 𝜈(𝑔(𝑛𝑖) − 𝑑𝑖), (2)

where 𝑓, 𝑔 ∶ [0,∞) → [0,∞) are continuous increasing and decreasing
functions, respectively, often taken to be Hill functions

𝑓 (𝑥) = 𝑥𝑘

𝑎 + 𝑥𝑘
(3)

𝑔(𝑥) = 1
1 + 𝑏𝑥ℎ

(4)

for 𝑥 ≥ 0 and ℎ, 𝑘 ≥ 1. 𝑟𝑡 ≡ 1∕𝑎 and 𝑏 are the trans-interactions strength
and ligand inhibition strength parameters, respectively1. 𝜈 > 0 is the
ratio between Notch and Delta decay rates, determining the strength
of decay. Finally, ⟨𝑑𝑖⟩ is the average level of Delta activity in the cells
adjacent to cell 𝑖, that is,

⟨𝑑𝑖⟩ =
1

|𝐧𝐧(𝑖)|
∑

𝑗∈𝐧𝐧(𝑖)
𝑑𝑗 , (5)

where the sum is taken over the nearest neighbours 𝐧𝐧(𝑖) of cell 𝑖 and
|𝐧𝐧(𝑖)| is the total number of neighbours. In general, depending on the
hexagonal lattice orientation, either 𝑁 or 𝑀 must be even to ensure
periodicity. From the previous equations, one can see that the rate of
production of Notch activity is an increasing function of the level of
Delta activity in neighbouring cells. In contrast, the rate of production
of Delta activity is a decreasing function of the level of activated Notch
within the same cell. The production of Notch and Delta activity is
balanced by decay.

1 The quantity 𝑎1∕𝑘 is the neighbour Delta activity level necessary for half-
maximal Notch activation, while 𝑏−1∕ℎ is the Notch activity level necessary for
half-maximal Delta inhibition.

2.2. Long-range signalling

In addition to lateral cell–cell signalling, we also consider the pos-
sibility of long-range signalling with respect to non-neighbouring cells.
We loosely refer to cell protrusions as the main mechanism for general,
isotropic long-range signalling, interchangeably using these terms. A
detailed discussion of protrusion dynamics is presented in [20]. For
now, our notion of protrusions remains relatively abstract. There are
several ways to implement protrusion-cell signalling. As a first simplifi-
cation, we assume ⟨𝑑𝑖⟩ is the only term affected by long-range signalling
and extend its definition to include non-neighbouring cells that contact
cell 𝑖. We also investigate the cases where ligand density decays with
distance and protrusions are stochastic.

In general, we consider the approach suggested in [18]. Here, the
authors used a weighting function 𝜔(𝑠, 𝑟) defining the signalling level
from a signaller cell 𝑠 to a receiver cell 𝑟. 𝜔 determines which cells are
connected through protrusions, defining a connectivity matrix whose
entries yield the signalling intensity. In a simplistic protrusion model,
all non-zero entries of such a matrix are equal. The weighting function
𝜔 captures the matrix information, and we may rewrite the interaction
term as follows

⟨𝑑𝑖⟩ =
∑

𝑗∈𝐧(𝑖)
𝜔(𝑖, 𝑗)𝑑𝑗 , (6)

where the sum is made over the neighbours of 𝑖, 𝐧𝐧(𝑖), and the non-
neighbouring cells that are reached by the protrusions, 𝐧𝐩(𝑖), of cell
𝑖. Such an array of indexes is defined as 𝐧(𝑖) = 𝐧𝐧(𝑖) ∪ 𝐧𝐩(𝑖). The
further assumption that each cell has a finite amount of active ligand
to distribute at any given time point results in the following restriction

∑

𝑗∈𝐧(𝑖)
𝜔(𝑖, 𝑗) = 𝜔 < +∞. (7)

Although there is some freedom in the interpretation of 𝜔, we assume
𝜔 = 1 for simplicity.

2.3. The 𝜖-Collier model

Our model, hereafter named the 𝜖-Collier model, extends the math-
ematical systems in [19] by considering the inclusion of long-range
signalling via protrusions balanced by the relative weighting factor 𝜖 ∈
[0, 1]. We begin by weighting each signalling contribution, juxtacrine
(𝜔𝐽 ) and protrusion-based (𝜔𝑃 ), by the factor 𝜖, to define the combined
weighting function

𝜔 ≡ (1 − 𝜖)𝜔𝐽 + 𝜖𝜔𝑃 . (8)

Eq. (6)–Eq. (8) define the 𝜖-Collier model, considering protrusions of
relative signalling intensity 𝜖. Naturally, Eq. (8) is only interesting when
𝜔𝐽 and 𝜔𝑃 are restricted to 𝐧𝐧(𝑖) and 𝐧𝐩(𝑖), respectively. For example,
the case 𝜖 = 0 and 𝜔𝐽 (𝑖, 𝑗) = 𝜒𝐧𝐧(𝑖)(𝑗)∕6, where 𝜒𝐧𝐧(𝑖) is the indicator
(or characteristic) function of the set 𝐧𝐧(𝑖), corresponds to the original
Collier model.

2.4. Coupling dynamics

We perform a linear stability analysis to understand the criteria for
pattern formation driven by Notch-Delta signalling. This is a useful tool
to not only identify the regions of the parameter space for which spon-
taneous patterning of SOP cells occurs but also to determine the typical
spacing between Delta-expressing cells, often called the characteristic
length of the pattern or pattern wavelength [15,17,19]. Our analysis
closely follows the methods outlined in [18,19,21] and Murray [22], for
the two-dimensional hexagonal array, and is based on the framework
presented in SN1.

Eq. (1)–Eq. (2) possesses a single positive homogeneous steady state
(𝑛∗, 𝑑∗). At this state, we have 𝑓 (𝑔(𝑛∗)) = 𝑛∗ and 𝑔(𝑛∗) = 𝑑∗, which is
unique because 𝑓 (𝑔(𝑛)) is monotonically decreasing for all 𝑛 ≥ 0. Then,
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Fig. 1. Long-range Notch-Delta signalling on hexagonal lattices.
(a) Hexagonal torus. Periodic hexagonal lattices can be seen as hexagonal tori. (b) Hexagonal lattice main directions (𝑗, 𝑘 axes) and cell position indexation relative to a focal cell
(0, 0). Different cell labelling schemes yield equivalent formulations of 𝛺𝑞,�̄�, as defined in Eq. (17). (c–f) Notch-Delta patterns on a 14 × 14 periodic lattice for varying 𝜖. SOP cells
(white, high Delta, low Notch) contrast with non-SOP cells (green, low Delta, high Notch). Here, ℎ = 𝑘 = 6, 𝑎 = 10−8, 𝑏 = 102, and 𝜈 = 1. Initial conditions 𝑛𝑖(0) and 𝑑𝑖(0) have
arbitrary values close to the homogeneous steady state (𝑛∗ , 𝑑∗) ≃ (0.744, 0.055).

for small perturbations �̃�𝑖 = 𝑛𝑖 − 𝑛∗ and 𝑑𝑖 = 𝑑𝑖 − 𝑑∗, linearisation leads
to

𝑑
𝑑𝑡

�̃�𝑖 = 𝐴⟨𝑑𝑖⟩ − �̃�𝑖 (9)
𝑑
𝑑𝑡

𝑑𝑖 = 𝜈𝐵�̃�𝑖 − 𝜈𝑑𝑖, (10)

where 𝐴 = 𝑓 ′(𝑔(𝑛∗)) is the signal trans-activation by the ligand and
𝐵 = 𝑔′(𝑛∗) is the ligand inhibition by the signal. For a 𝑁 ×𝑀 periodic
hexagonal lattice, with 1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝑀 , the perturbations
can be written as a discrete Fourier series

�̃�𝑖 ≡ �̃�𝑗,𝑘 =
𝑁
∑

𝑞=1

𝑀
∑

𝑝=1
𝜉𝑞,𝑝𝑒

2𝜋i(𝑞𝑗∕𝑁+𝑝𝑘∕𝑀) (11)

𝑑𝑖 ≡ 𝑑𝑗,𝑘 =
𝑁
∑

𝑞=1

𝑀
∑

𝑝=1
𝜂𝑞,𝑝𝑒

2𝜋i(𝑞𝑗∕𝑁+𝑝𝑘∕𝑀), (12)

where two subindexes have been used to refer to the spatial position of
cell 𝑖 within the two-dimensional hexagonal lattice (see Fig. 1(b)). For
1 ≤ 𝑞 ≤ 𝑁 and 1 ≤ 𝑝 ≤ 𝑀 , the inverted transform is

𝜉𝑞,𝑝 =
1

𝑀𝑁

𝑀
∑

𝑘=1

𝑁
∑

𝑗=1
�̃�𝑗,𝑘𝑒

−2𝜋i(𝑞𝑗∕𝑁+𝑝𝑘∕𝑀) (13)

𝜂𝑞,𝑝 =
1

𝑀𝑁

𝑀
∑

𝑘=1

𝑁
∑

𝑗=1
𝑑𝑗,𝑘𝑒

−2𝜋i(𝑞𝑗∕𝑁+𝑝𝑘∕𝑀). (14)

Finally, applying this change of variables to Eq. (9)–Eq. (10) leads to
the following linear system of coupled ordinary differential equations

𝑑
𝑑𝑡

(

𝜉𝑞,𝑝
𝜂𝑞,𝑝

)

= 𝐿
(

𝜉𝑞,𝑝
𝜂𝑞,𝑝

)

, (15)

where matrix 𝐿 is a specification of matrix 𝐋𝑞,�̄� in Eq. (S43), defined as

𝐿 =
(

−1 𝐴𝛺𝑞,�̄�
𝜈𝐵 −𝜈

)

(16)

and 𝛺𝑞,�̄� is the function that takes into account the spatial coupling
terms of Eq. (9)–Eq. (10) within the hexagonal lattice (in this case,
𝛺𝑞,�̄� ∝

[

𝜴𝑞,�̄�
]

12, defined by Eq. (S42)). We have then turned Eq. (1)–
Eq. (2) into a system of constant-coefficient linear differential equations
described by Eq. (15), which has a straightforward family of solutions.
For now, however, we focus on the coupling function 𝛺𝑞,�̄�, which holds
the main mechanisms behind the dynamics of juxtacrine and long-range
signalling in our system.

𝛺𝑞,�̄� varies according to the weighting function 𝜔. Here, 𝑞 = 𝑞∕𝑁
and �̄� = 𝑝∕𝑀 define the discrete wavenumbers (Fourier modes) and
thus solutions for 0 < 𝑞, �̄� ≤ 1 correspond to patterned solutions
with corresponding pattern wavelengths (1∕𝑞, 1∕�̄�). We assume that
connections between cells depend only on their relative positions in the
lattice (Fig. 1(b)) and therefore, for a sender cell 𝑠 in position (𝑗, 𝑘) and
a receiver cell 𝑟 in position (𝑗′, 𝑘′), we set 𝜔(𝑠𝑗,𝑘, 𝑟𝑗′ ,𝑘′ ) ≡ 𝜔(𝑗′−𝑗, 𝑘′−𝑘) =
𝜔(𝛥𝑗, 𝛥𝑘). Hence, 𝛺𝑞,�̄� is, in general, given by

𝛺𝑞,�̄� =
∑

𝛥𝑗𝑘∈𝑆
𝜔(𝛥𝑗, 𝛥𝑘)𝑒2𝜋i(𝑞𝛥𝑗+�̄�𝛥𝑘), (17)

where 𝛥𝑗𝑘 = (𝛥𝑗, 𝛥𝑘). Now, if we assume connections are symmetric,
i.e, 𝜔(𝛥𝑗, 𝛥𝑘) = 𝜔(−𝛥𝑗,−𝛥𝑘), we have, by Example 1.1 in SN1,

𝛺𝑞,�̄� =
∑

𝛥𝑗𝑘∈𝑆
𝜔(𝛥𝑗, 𝛥𝑘) cos(2𝜋(𝑞𝛥𝑗 + �̄�𝛥𝑘)). (18)

The diagonalisation of 𝐿 leads to the temporal eigenvalues

𝜆±𝑞,�̄� =
1
2

[

−(1 + 𝜈) ±
√

(1 + 𝜈)2 − 4𝜈(1 − 𝐴𝐵𝛺𝑞,�̄�)
]

. (19)
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Then, since 𝜈 > 0, 𝜆+𝑞,�̄� is a positive real number if and only if 𝐴𝐵𝛺𝑞,�̄� >
1. 𝐴 and 𝐵 are the slopes of the feedback functions 𝑓 and 𝑔 at the
homogeneous steady state and |𝐴𝐵| is defined as the feedback strength.
If |𝐴𝐵| = 0, then the homogeneous solution is linearly stable, Re(𝜆±𝑞,�̄�) <
0, and thus no periodic pattern is expected to emerge. On the other
hand, the feedback strength has to be sufficiently high for patterns to
arise, that is, |𝐴𝐵| > |

|

1∕𝛺min||, where 𝛺min denotes the minimum of the
real function 𝛺𝑞,�̄�, so that Re(𝜆+𝑞,�̄�) is maximal. With 𝐴 > 0, 𝐵 < 0 and
assuming 𝛺min < 0, we expect patterned solutions provided

𝐴𝐵 < 1
𝛺min

. (20)

In particular, this feedback is controlled by the tuple (𝑎, 𝑏, ℎ, 𝑘) as
follows

𝐴 = 𝑓 ′(𝑔(𝑛∗)) = 𝑎𝑘𝑑∗𝑘−1

(𝑎 + 𝑑∗𝑘)2
(21)

𝐵 = 𝑔′(𝑛∗) = − 𝑏ℎ𝑛∗ℎ−1

(1 + 𝑏𝑛∗ℎ)2
, (22)

where, again, (𝑛∗, 𝑑∗) is the homogeneous steady state, 𝑟𝑡 = 1∕𝑎 is
the trans-interactions strength and 𝑏 is the ligand inhibition strength.
(𝑛∗, 𝑑∗) can be found by setting ⟨𝑑𝑖⟩ = 𝑑𝑖 and finding the intersection
of the nullclines 𝑛𝑖 = 𝑓 (𝑑𝑖) and 𝑑𝑖 = 𝑔(𝑛𝑖). Assuming for convenience
ℎ = 𝑘, this can be rewritten as

𝑛∗ = 𝑓 (𝑔(𝑛∗)) (23)

𝑑∗ = 𝑔(𝑛∗), (24)

which can be numerically solved for each triple (ℎ, 𝑟𝑡, 𝑏) in the param-
eter space. Such a solution, together with Eq. (20), defines the discrete
analogues of Turing spaces consisting of 𝑟𝑡 − 𝑏 = ℎ parameter regions
where spontaneous patterns occur. Outside such regions, pattern forma-
tion is not expected, since all of the linear modes have negative growth
rates.

We now explore different weighting functions to capture the effects
of juxtacrine signalling and protrusions, and discuss what features
of 𝜔 affect 𝛺min. We recall that 𝜔 determines the family of systems
Eq. (1)–Eq. (2) via the weighting dynamics defined by Eq. (6)–Eq. (8).

For a given cell on a hexagonal lattice, we denote the closest ring
of order 𝑘 ∈ N0 by 𝑅𝑘, such that 𝑅0 is the cell itself, 𝑅1 are its 6
neighbouring cells, 𝑅2 is the ring of 12 second-neighbour cells, and so
forth. Notice that |𝑅𝑘| = 6𝑘 (𝑘 > 0). We further expand the definition
of 𝑆 in SN1 by defining 𝑆𝑘 as the relative index set of cells in 𝑅𝑘
(according to Fig. 1(b)), that is,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑆0 = {(0, 0)}

𝑆1 = {(±1, 0), (0,±1),±(1, 1)}

𝑆2 = {(0,±2), (±2, 0),±(1,−1),
± (1, 2),±(2, 1),±(2, 2)}

⋮

. (25)

This notation will be used throughout this work. Notice that such
a definition can be ambiguous in different contexts, as discussed in
Remark 1.2 (SN1).

3. Results

3.1. Juxtacrine signalling and simplistic protrusions

For juxtacrine signalling on a hexagonal lattice, without protrusions,
we set

𝜔𝐽 (𝛥𝑗, 𝛥𝑘) =

{

1
6 if (𝛥𝑗, 𝛥𝑘) ∈ 𝑆1,
0 otherwise,

(26)

so that

𝛺𝑞,�̄� =
1
3
[cos (2𝜋𝑞) + cos (2𝜋�̄�) + cos (2𝜋 (𝑞 + �̄�))] . (27)

Notice that 𝛺𝑞,�̄� takes discrete values within the interval [−0.5, 1].
The modes that minimise Eq. (27) are those for which 𝑁 and 𝑀
are multiples of 3, thus (𝑞, �̄�) ∈ {(1∕3, 1∕3), (2∕3, 2∕3)} and a pattern
with wavelength 3 along the main directions of the hexagonal lattice
emerges, provided 𝐴𝐵 < −2. In general, and depending on the initial
conditions, such patterns may yield 1, 2 or 3 different cell types, as
discussed in more detail below.

Considering protrusions, we first look at the more straightfor-
ward case where only the first ring of 12 non-neighbouring cells, 𝑅2,
is reached by protrusions. Here, signalling is weighted laterally by
Eq. (26) and on 𝑅2 by

𝜔𝑃 (𝛥𝑗, 𝛥𝑘) =

{

1
12 if (𝛥𝑗, 𝛥𝑘) ∈ 𝑆2,
0 otherwise.

(28)

Figs. 1(c)–1(f) show the observable patterns for different values of 𝜖,
with initial conditions near the homogeneous steady state, obtained
by solving Eq. (23)–Eq. (24). Notice that the limit case 𝜖 = 1 has the
extreme feature of no juxtacrine signalling, hence the small clusters of
Delta-expressing cells in Fig. 1(f). Even for small values of 𝜖, sparse
patterns are evident.

We may then weight each signalling contribution with a factor 𝜖 > 0
and define the combined weighting function 𝜔 = (1− 𝜖)𝜔𝐽 + 𝜖𝜔𝑃 . Using
this leads to

𝛺𝑞,�̄� =
(1 − 𝜖)

3
[cos (2𝜋𝑞) + cos (2𝜋�̄�) + cos (2𝜋 (𝑞 + �̄�))]

+ 𝜖
6

[

cos (4𝜋𝑞) + cos (2𝜋(�̄� − 𝑞)) + cos (4𝜋�̄�)

+ cos (2𝜋 (2𝑞 + �̄�)) + cos (2𝜋 (𝑞 + 2�̄�))

+ cos (4𝜋 (𝑞 + �̄�))
]

. (29)

In this case, minimising 𝛺𝑞,�̄� is trickier and therefore we consider
a numerical approach. For different values of the long-range signalling
strength 𝜖, Fig. 2(a) shows the change of 1∕|𝛺min| for increasing values
of 𝜖. Notice that 𝛺max = 1 for all 𝜖. Equal juxtacrine-protrusion
weighting occurs when 𝜖 = 2∕3 (𝛺min(2∕3) ≃ −0.24). For each 𝜖, the
number of modes varies, as seen in Fig. 2(b). Notice that 𝛺𝑞,�̄� = 𝛺1−𝑞,1−�̄�
and, in fact, 𝛺𝑞,�̄� is symmetric with respect to the planes 𝑞 = �̄� and
𝑞 = 1 − �̄� for all 𝜖. An interesting observation is that at around 𝜖 = 0.4
there are a total of 8 minimising modes, contrasting to the single pair of
modes for 𝜖 < 0.4 and the 6 distinct modes for 𝜖 > 0.4 (Figs. 2(d)–2(f),
Video S1). The bifurcation observed in Fig. 2(b) at 𝜖 = 0.4 is predicted
independently of the Hill functions, and can be mathematically shown
by solving, for 𝜖,

𝛺 1
3 ,

1
3
(𝜖) = 𝛺𝑞,�̄�(𝜖) (30)

and a minimising pair (𝑞, �̄�) ∉ {(1∕3, 1∕3), (2∕3, 2∕3)} (see SN1 for
details). Figs. 2(g)–2(i) show some of the simulations for corresponding
values of 𝜖.

As discussed before, the critical wave numbers maximise the real
part of the temporal eigenvectors. Equivalently, Fig. 2(c) shows
max𝑞,�̄� Re(𝜆±𝑞,�̄�) as a function of the relative weight parameter 𝜖, cor-
responding to the critical 𝐴𝐵 = 1∕(max𝜖 𝛺min) ≃ −5.207. Here,
max𝑞,�̄�(Re(𝜆±𝑞,�̄�)) > 0 for all 𝜖, and thus patterns are expected to emerge
with the maximising wavelength modes. As suggested by Eq. (21)–
Eq. (24), we may go a step further and work out the specific parameter
regions for which |𝐴𝐵| yields pattern formation. The phase diagrams
in Fig. 3 (Video S2) represent the regions in the 𝑟𝑡 − 𝑏 plane such that
𝐴𝐵 < 1∕𝛺min(𝜖), or more specifically,

𝑛∗1−ℎ𝑑∗1−𝑘((1 + 𝑏𝑛∗ℎ)(𝑎 + 𝑑∗𝑘))2 < −𝑎𝑏ℎ𝑘𝛺min(𝜖) (31)

for different values of 𝛺min and corresponding 𝜖. The 𝜖-Collier model
is robust with respect to the pair (𝑟𝑡, 𝑏), corresponding to the trans-
interactions strength and ligand inhibition strength parameters, respec-
tively. Increasing 𝜖 from zero initially reduces the size of the discrete
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Fig. 2. Coupling dynamics of simplistic protrusions as functions of 𝜖.
(a) 1∕|𝛺min|. In this case, (𝑞, �̄�)|𝜖=0 ∈ {(1∕3, 1∕3), (2∕3, 2∕3)} and max𝜖 𝛺min ≃ −0.192. (b) Plot of the fastest growing modes (𝑞, �̄�). 𝑞 (purple) and �̄� (orange, artificially shifted) have
identical plots. (c) Maximum value of Re(𝜆±𝑞,�̄�) as function of 𝜖, with 𝐴𝐵 = 1∕(max𝜖 𝛺min) ≃ −5.207. (d–f) Plot of 𝛺𝑞,�̄� and respective minimising modes (in red). (g–i) Simulations
on a 14 × 14 lattice for different values of 𝜖. Parameters similar to Fig. 1 (see Table 1 in Supplementary Note 3).

Fig. 3. Phase diagrams.
Log–log contour plot of 𝐴𝐵 as a function of 𝑟𝑡 , 𝑏. The regions delimited by the dashed
lines indicate the Turing spaces where spontaneous pattern formation occurs (𝐴𝐵 <
1∕𝛺min(𝜖)), for each 𝜖 ∈ {0, 0.2, 0.4, 0.8, 1}. Here, ℎ = 𝑘 = 6. In this region, min𝑟𝑡 ,𝑏 𝐴𝐵 ≃
−11.986 at (𝑟𝑡 , 𝑏) ≃ (104.041 , 102) (yellow cross). The purple line corresponds to 𝐴𝐵 = −2
(𝜖 = 0). Red crosses indicate the critical points (𝑟𝑡 , 𝑏) ∈ {(10, 102), (102 , 10), (105 , 101.3)}.
Parameter values are shown in Table 1.

Turing space, in which patterning occurs, followed by an increase after
intermediate values of 𝜖 (𝛺min(𝜖) has a maximiser at 𝜖 ≃ 0.455), which
is in accordance with the monotonicity change of 1∕|𝛺min| (Fig. 2(a)).
Note that Turing spaces for different values of 𝜖 are strictly contained
sets, via Eq. (31). In the region (𝑟𝑡, 𝑏) ∈ [10−1, 1010] × [100, 102], patterns
emerge for any 𝜖, since there are always non-empty Turing spaces
(min𝑟𝑡 ,𝑏 𝐴𝐵 ≃ −11.986 < −5.207 ≃ 1∕max𝜖 𝛺min). As discussed below, we
are interested in the dynamics near bifurcations, where LSA is expected
to better predict pattern selection. In particular, we highlight three
critical points (𝑟𝑡, 𝑏) ∈ {(10, 102), (102, 10), (105, 101.3)} (red crosses in
Fig. 3), for later reference.

Patterning timing is also affected by relative weighting. To measure
it, we define a constraint that ensures that the overall change in activity
across the lattice does not exceed a certain limit. This can be interpreted
as a control mechanism that prevents rapid and drastic changes in
Delta activity levels, which could be indicative of unstable or erratic
behaviour in the system. We define patterning time as the instant 𝑡 for
which
1

𝑁𝑀
∑

𝑗,𝑘
|𝑑𝑗,𝑘(𝑡) − 𝑑𝑗,𝑘(𝑡 − 1)| ≤ 𝑑 (32)

holds, for some threshold 𝑑. With 𝑑 ≃ 0.001, Fig. S5 shows that
patterning converges fast for different ranges of 𝜖 depending on the
critical points. On 14 × 14 lattices, patterning is slower around 0.35 <
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Fig. 4. Dynamics at critical 𝜖 values.
Delta activity dynamics on (a–b) 6 × 6 and (c–d) 14 × 14 periodic lattice, for (a,c)
𝜖 ≃ 0.09, and (b,d) 𝜖 ≃ 0.78. Patterns with multiple cell types emerge for critical values
of 𝜖.

𝜖 < 0.55. In particular, the peak around 𝜖 = 0.4 is consistent with the
dynamics predicted by LSA and maxRe(𝜆±𝑞,�̄�), in Fig. 2(c). Naturally,
other refined patterning criteria are conceivable. Our argument is
merely an illustration of the predictive power of LSA.

3.2. Multiple cell types

For a narrow range of 𝜖 values, alternative steady state solutions
that include more than two cell types (based on Delta levels) are
possible. This effect is observable at both ends of the 𝜖 spectrum,
defining thresholds of pattern selection. To two decimal places, for 𝜖 ≃
0.09 and 𝜖 ≃ 0.78, 6 × 6 periodic lattices yield approximately 3 different
cell types (Figs. 4(a)–4(b)). For 14 × 14 lattices, we get a gradient of
cell types (Figs. 4(c)–4(d)). Whether some of these solutions eventually
converge to others, reducing the number of distinct cell types, is not
known. The definition of a cell type is therefore ambiguous and, for
larger timescales, processes such as proneural positive feedback or
cell proliferation take over, rendering the subject of long-term pattern
resolution purely academic. Nonetheless, we believe this effect to be
noteworthy.

3.3. Long and oriented protrusions

A possible first extension is to consider the effects of longer or
oriented protrusions. Examples of applications regarding this type of
long-range signalling can be found in studies of the stripe and spot
patterns observed in the skin of zebrafish and pearl danio, respectively
[3,23,24].

In [18], a general weighting function was considered to account for
protrusion length and orientation. Here, we adapt such a framework by
focusing only on the protrusion weighting component 𝜔𝑝𝑔 , given by

𝜔𝑝𝑔 (𝛥𝑗, 𝛥𝑚) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔∗𝑒−𝜎1(𝑑𝑠,𝑟−𝑑)
2
𝑒𝜎2 cos(𝛼(𝜃𝑠,𝑟−�̂�))

if 1 < 𝑑𝑠,𝑟 ≤ 𝑝𝓁
and |𝜃𝑠,𝑟| ≥ 𝑝𝜃 ,

0 otherwise,

(33)

where 𝑑𝑠,𝑟 and 𝜃𝑠,𝑟 ∈ (−𝜋, 𝜋] are defined as the relative distance and the
angular bearing between the signalling and receiving cells, respectively.
𝜎1, 𝜎2, 𝑑, �̂� and 𝛼 are parameters that control the shape and form of

the weighting function, and 𝜔∗ is the normalising coefficient implicitly
defined by Eq. (7). Furthermore, 𝑝𝓁 is the maximum protrusion length
and 𝑝𝜃 is an angle bound.

We assume 𝑑𝑠,𝑟 is the same for each cell in 𝑅𝑘, 𝑘 ≥ 2, and thus
we may rewrite it, using our previous index notation, as a function of
(𝛥𝑗, 𝛥𝑚)

𝑑𝑠,𝑟 ≡ 𝑑𝑠,𝑟(𝛥𝑗, 𝛥𝑚) = 𝑘, if (𝛥𝑗, 𝛥𝑚) ∈ 𝑆𝑘, (34)

which yields 1 < 𝑘 ≤ 𝑝𝓁 . Notice that 𝛥𝑚 replaces 𝛥𝑘 in Fig. 1(b) to avoid
confusion with the index of 𝑆𝑘. Eq. (34) is equivalent to the hexagonal-
Manhattan distance 𝑑𝐻 defined in Remark 1.2 (SN1). Notice also that,
with 𝑝𝓁 = 2, 𝑝𝜃 = 0, 𝜎1,2 = 0 and 𝜔∗ = 1∕12, we recover the 𝑅2 weighting
function 𝜔𝑃 given by Eq. (28). We set, in this case, 𝜔 = (1−𝜖)𝜔𝐽 +𝜖𝜔𝑝𝑔 .

We focus only on the case of longer protrusions and thus we impose
radial symmetry by taking 𝜎2 = 0, 𝑝𝜃 = 0 (cases with 𝜎2 > 0 lead to axial
and polarised signalling systems, as discussed in [18]). Intuitively, 𝜎1
represents the strength of ligand density decay with distance. In the
following, we assume long-range signalling strength to decrease as a
function of 𝑑𝑠,𝑟 and therefore take 𝑑 = 𝑑𝑠,𝑟(𝛥𝑗, 𝛥𝑚)|(𝛥𝑗,𝛥𝑚)∈𝑅2

= 2 and
𝜎1 > 0. Hence Eq. (33) simplifies to

𝜔𝑝𝑔 (𝛥𝑗, 𝛥𝑚) =

⎧

⎪

⎨

⎪

⎩

𝜔∗𝑒−𝜎1(𝑑𝑠,𝑟(𝛥𝑗,𝛥𝑚)−2)
2

if 1 < 𝑑𝑠,𝑟 ≤ 𝑝𝓁 ,
0 otherwise,

(35)

where, from Eq. (7),

𝜔𝑝𝑔 (𝑝𝓁 , 𝜎1) ≡
1
𝜔∗ (36)

=
∑

(𝛥𝑗,𝛥𝑚)∈
⋃𝑝𝓁

𝑘=2 𝑆𝑘

𝑒−𝜎1(𝑑𝑠,𝑟(𝛥𝑗,𝛥𝑚)−2)
2 (37)

= 6
𝑝𝓁
∑

𝑘=2
𝑘𝑒−𝜎1(𝑘−2)

2
. (38)

Under the assumption that protrusions may reach up to 𝑅4 (𝑝𝓁 = 4),
we have that, as an example, 𝜔𝑝𝑔 (4, 𝜎1) = 12 + 18𝑒−𝜎1 + 24𝑒−4𝜎1 . For
different values of 𝜎1, Fig. 5(d) shows the minimal feedback strength
required for patterning, derived from 𝛺𝑞,�̄�. The case 𝜎1 = 0 yields
equal 𝑅𝑘 (2 ≤ 𝑘 ≤ 4) weighting and thus 𝜔∗ = 1∕|

⋃𝑝𝓁
𝑘=2 𝑅𝑘| =

1∕54, in this case (Figs. 5(a)–5(c)). As 𝜎1 → ∞, 𝜔∗ → 1∕12 and we
recover the dynamics for 𝑅2 protrusions (Fig. 5(e)). Figs. 6(a)–6(c)
show simulations for different values of 𝑝𝓁 . Interestingly, the pattern
wavelengths for 𝑝𝓁 = 4 are not correctly predicted by LSA, as seen by
comparing the minimisers of Fig. 5(c) with the simulation in Fig. 6(c).
For this value of 𝑝𝓁 , the minimising modes remain unchanged for a
wider range of 𝜖.

Considering bounded protrusions significantly alters the coupling
function and symmetry may be broken. Interesting pattern may arise
in this case when 𝜖 = 1, especially regarding the emergence of cluster-
ing effects or zebrafish-type patterns, as shown in Figs. 6(d)–6(e) and
discussed in some of the work by Binshtok and Sprinzak [25], Kondo
et al. [24], Moreira and Deutsch [26].

3.4. Stochastic protrusions

One way of generalising the weighting function 𝜔 is to consider
some level of randomness in protrusion-cell signalling. Previous studies
have suggested that pattern regularity and refinement can be greatly
improved by considering dynamic lifespan-based protrusions [9]. Here,
we extend such an approach to the 𝜖-Collier model on the 𝑅2 ring.

Depending on the protrusion type and level of biological detail, dif-
ferent stochastic models may be implemented. For example, in the case
of the eukaryotic flagellum [27] and stereocilia [28], the length evolu-
tion can be studied using a master equation with length-dependent rates
of protrusion attachment and detachment. For such systems, the length
fluctuations can be mapped onto an Ornstein–Uhlenbeck process. In
other work, the length dynamics of bacterial protrusions (pili) have
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Fig. 5. Coupling dynamics of long protrusions as functions of 𝜖.
(a–c) Plot of 𝛺𝑞,�̄� and respective minimising modes (in red) with 𝜎1 = 0. Wavier plots are observable due to the more complex nature of the weighting function, considering 𝑝𝓁 = 4.
(d) Critical |𝐴𝐵| for different values of 𝜎1, given by |1∕𝛺min|, with 𝑝𝓁 = 4. (e) 1∕𝜔∗ as a function of 𝑝𝓁 and 𝜎1. 𝜔∗ → 1∕12 as 𝜎1 → ∞. Parameters are shown in Table 1.

been described by a three-state Markov process [29]. Further details
on the physics of filopodial protrusions can be found in [20,30] and an
extensive discussion on length control of long cell protrusions of various
types was presented in [31].

Here, however, we assume isotropic protrusions and consider dy-
namic binding and unbinding of filopodia to non-neighbouring cells
throughout the simulation. The lifespan of protrusions is determined by
birth and death rates, 𝑝𝑏 and 𝑝𝑑 , respectively. These correspond to the
attachment and detachment rates of protrusions to non-neighbouring
cells. Within a short time interval 𝛥𝑡, a link is formed between a cell
and one of its second neighbours with probability 𝑝𝑏𝛥𝑡. Such a link
is destroyed with probability 𝑝𝑑𝛥𝑡. This leads to the formulation of a
continuous-time telegraph process [32–35] with rates 𝑝𝑏 and 𝑝𝑑 . This
process is also known as a dichotomic or two-valued Markov process.
In the following, we first present well-known results on telegraph
processes, followed by the application to our case.

From stochastic theory, the general telegraph process is defined as
a memoryless continuous-time stochastic process that has two distinct
values. If the two possible values that a random variable 𝑋(𝑡) can take
are 𝑥1 and 𝑥2, then the process can be described by the following master
equations

𝜕𝑡𝑃 (𝑥1, 𝑡|𝑥, 𝑡0) = −𝛾1𝑃 (𝑥1, 𝑡|𝑥, 𝑡0) + 𝛾2𝑃 (𝑥2, 𝑡|𝑥, 𝑡0) (39)

𝜕𝑡𝑃 (𝑥2, 𝑡|𝑥, 𝑡0) = 𝛾1𝑃 (𝑥1, 𝑡|𝑥, 𝑡0) − 𝛾2𝑃 (𝑥2, 𝑡|𝑥, 𝑡0), (40)

where 𝛾1 is the transition rate from state 𝑥1 to state 𝑥2 and 𝛾2 is the
transition rate from state 𝑥2 to state 𝑥1. In this case, 𝑥1 represents the
state where a protrusion is absent and 𝑥2 where it is present.

We are now interested in studying the asymptotic dynamics of the
telegraph process, approximating its discrete realisations to a Bernoulli
process, given a suitable condition on the realisation timescales. With
𝛥𝑡 ≡ 𝑡−𝑡0 ≫ (𝛾1+𝛾2)−1, the solution approaches a stationary distribution
𝐏𝑠 given by

𝐏𝑠 ≡ lim
𝛥𝑡≫(𝛾1+𝛾2)−1

𝐏(𝑡) = 1
𝛾1 + 𝛾2

(

𝛾2
𝛾1

)

, (41)

where 𝐏 =
(

𝑃 (𝑥1, 𝑡|𝑥, 𝑡0), 𝑃 (𝑥2, 𝑡|𝑥, 𝑡0)
)𝑇 . The stationary average is then

given by

⟨𝑋⟩𝑠 =
𝑥1𝛾2 + 𝑥2𝛾1
𝛾1 + 𝛾2

. (42)

In our case, we have 𝛾1 = 𝑝𝑏, 𝛾2 = 𝑝𝑑 , 𝑥1 = 0 and 𝑥2 = 1. Hence, in the
limit where 𝛥𝑡 ≫ (𝑝𝑏 + 𝑝𝑑 )−1, the probability of finding a protrusion is
𝑝𝑏∕(𝑝𝑏 + 𝑝𝑑 ). We may then treat such a process as a Bernoulli process
with probability 𝑝𝑏∕(𝑝𝑏 + 𝑝𝑑 ). In other words, if the timescale at which
we make the observation is longer than the inverse of the event rates,
we may expect the process to be memoryless every time we observe,
describing a Bernoulli process.

For each 𝑘 in 𝑅2 (cells reached by protrusions), we extend the 𝜖-
Collier model to account for these stochastic dynamics by defining the
following random variables

𝜖𝑘
iid∼ Bern

(

𝑝𝑏
𝑝𝑏 + 𝑝𝑑

)

. (43)

We assume that neighbouring 𝑅1 cells are always linked, with weight
(1−𝜖)∕6, and 𝑅2 cells are linked with stochastic weight 𝜖𝜖𝑘∕12. At each
time step, the stochastic coupling term is then given by

⟨𝑑𝑖⟩(𝑡) =
1 − 𝜖
6

∑

𝑗∈𝑅1

𝑑𝑗 (𝑡) +
𝜖
12

∑

𝑘∈𝑅2

𝑑𝑘(𝑡)𝜖𝑘, (44)

where the second term is a sum of weighted i.i.d. Bernoulli distribu-
tions. Note that 𝑑𝑖 here should not be confused with the homogeneous
state perturbation introduced in other sections. One of the key aspects
of having dynamic protrusions is the possibility of pattern refinement
over time. As suggested in [9], we define the coefficient of variation,
𝜁𝑉 , of a pattern as the ratio between the standard deviation and mean
of the distances from each SOP cell to its 6 closest SOP cells. This
coefficient yields a measure of the global order of the emergent pattern,
which we then track for different values of (𝑝𝑏, 𝑝𝑑 ), as seen in Fig. 7(a).
The case (𝑝𝑏, 𝑝𝑑 ) = (10, 3.5) is particularly interesting as the pattern
converges to ideal cell packing (𝜁𝑉 = 0) at around 𝑡 = 390 (Fig. 7(e)).
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Fig. 6. Patterning with long and oriented protrusions.
(a–c) Simulations on a 14 × 14 lattice for different values of 𝑝𝓁 . Here, 𝜖 = 0.6 and ℎ = 𝑘 = 6. (d–e) Bounded protrusions may lead to other patterns, relevant to other applications.
Here, (d) (𝜖, 𝑝𝓁 , 𝑝𝜃 ) = (1, 3, 𝜋∕3), and (e) (𝜖, 𝑝𝓁 , 𝑝𝜃 ) = (0.8, 2, 𝜋∕4).

Some patterns only stabilise once optimal packing is attained, de-
pending on the tissue dimensions. For a periodic tissue whose dimen-
sions are multiples of 14, which guarantees optimal 𝑅2-signal sparse
patterning is possible (notice that 14 × 7 would also work), once the
coefficient of variation is minimised, patterning does stabilise. In many
cases, given enough time, the stable 𝑅3 pattern is obtained after gradual
refinement determined by 𝑝𝑏 and 𝑝𝑑 . In a perfectly refined pattern, one
should expect 𝜁𝑉 = 0, which means each SOP cell is surrounded in 𝑅3
by 6 other equally spaced SOP cells (Fig. 7(e), Video S3).

It should be noted that the simulations shown in Fig. 7 are all
isolated examples corresponding to single realisations. Although the
purpose of this study is to identify 𝑝𝑏 and 𝑝𝑑 such that pattern refine-
ment is achieved, the complex relation between such rates to guarantee
convergence to the refined pattern may be hinted at by a thorough
stochastic analysis, which is beyond the scope of this work.

Remarkably, if we look at the extreme case of sudden removal of
protrusions (from the refined state), we find that such a state is stable
under purely juxtacrine lateral inhibition (Fig. 7(e)). This is similar to
taking 𝜖 = 0 after pattern stabilisation. Patterns of such wavelength
contrast with the ones predicted by LSA, but they do not contradict pat-
tern selection under consideration of nonlinear terms [19], as discussed
below.

Considering different approaches to noise-driven protrusions might
help in better understanding the role of stochastic effects in patterning
and refinement. For instance, avoiding the Bernoulli approximation on
the Markov-type protrusion dynamics could hint at a more realistic de-
scription of filopodium behaviour and consequently pattern formation.

Noise-mediated filopodium reach and orientation have been studied
in [9]. Cellular automaton models have also been used to explain sparse
and more complex patterns [10]. Dichotomous noise has also been
applied in Langevin dynamics, in a broader scenario [36].

A natural alternative to this source of noise, is to study the role of
intrinsic noise, driven by Langevin dynamics [37,38]. In the case of
morphogen-mediated patterning of gene expression, intrinsic noise has
proven to affect timescale dynamics of bistable switches [39]. Stochas-
tic effects were shown to accelerate juxtacrine pattern formation and
alternative lateral inhibition models [40] were found to be robust to
intrinsic noise [14]. Statistical properties of protein concentration in
gene-regulated networks were more generally discussed in [41]. In the
particular case of Notch-Delta and protrusions, a recent implementation
of Gillespie’s Stochastic Simulation Algorithm (SSA) [38] was discussed
in [42], for a more convoluted signalling system, following the model
by Hadjivasiliou et al. [11]. Here, the authors interpreted the relevant
concentrations at each cell as absolute molecular counts at some fixed
system volume.

3.5. Robustness and pattern selection

We now explore how Fourier analysis describes pattern selection
under LSA. Again, we discuss robustness to changes in two of the main
parameters in the 𝜖-Collier model: the Hill function switch parameters,
given by the trans-interactions strength 𝑟𝑡 = 1∕𝑎 and the ligand inhibi-
tion strength 𝑏. We study the convergence to the desired pattern with
long-range signalling for different values of 𝑎 and 𝑏. Here, we consider

8
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Fig. 7. Dynamics of stochastic protrusions.
(a) Stochastic behaviour of the coefficient of variation 𝜁𝑉 in spacing between nearest Delta-expressing cells. (b–e) Pattern refinement may take a long time to stabilise. Once
reaching the refined state at 𝑡 = 400, the pattern hardly changes. The final pattern is also stable under no protrusions. Here, 𝜖 = 0.6, 𝑝𝑏 = 10 and 𝑝𝑑 = 3.5. Other parameter values
are shown in Table 1.

protrusions acting on the 𝑅2 ring. In a system with two variables per
cell like the linearised system
𝑑
𝑑𝑡

�̃�𝑖 = 𝐴⟨𝑑𝑖⟩ − �̃�𝑖 (45)
𝑑
𝑑𝑡

𝑑𝑖 = 𝜈𝐵�̃�𝑖 − 𝜈𝑑𝑖 (46)

the characteristic polynomial is of second order. As a consequence, each
couple (𝑞, �̄�) has two eigenvectors and eigenvalues. We then have that
the solution of the linearised problem is given by
(

�̃�𝑗,𝑘(𝑡)
𝑑𝑗,𝑘(𝑡)

)

=
𝑁
∑

𝑞=1

𝑀
∑

𝑝=1
𝐀(𝑞, �̄�)𝑒2𝜋i(𝑞𝑗+�̄�𝑘), (47)

where

𝐀(𝑞, �̄�) ≡ 𝐶+
𝑞,�̄�𝑒

𝜆+𝑞,�̄�𝑡𝐯+𝑞,�̄� + 𝐶−
𝑞,�̄�𝑒

𝜆−𝑞,�̄�𝑡𝐯−𝑞,�̄�, (48)

and where 𝐯±𝑞,�̄� and 𝜆±𝑞,�̄� are the eigenvectors and eigenvalues associated
to (𝑞, �̄�), respectively. 𝐶+

𝑞,�̄� and 𝐶−
𝑞,�̄� are constants depending on the

initial conditions of the problem. In the case that at least one family
of modes (𝑞, �̄�) grows exponentially fast, it linearly destabilises the
homogeneous solution and this family dominates over the rest, giving
rise to a periodic pattern with the (𝑞, �̄�)-wavenumbers. At such critical
modes, we have that the eigenvalue with the largest real part and
respective eigenvector are given, as functions of 𝜖, by

𝜆∗(𝜖) = 1
2
(−(1 + 𝜈) +

√

(1 + 𝜈)2 − 4𝜈(1 − 𝐴𝐵𝛺min(𝜖))) (49)

𝐯∗(𝜖) =
(

1
2 (𝜈 − 1) +

√

(1 + 𝜈)2 − 4𝜈(1 − 𝐴𝐵𝛺min(𝜖))
𝜈𝐵

)

. (50)

Hence, for large 𝑡, the dominant pattern is a superposition of modes
with periodicity determined by (𝑞, �̄�) and 𝜖. Thus, for each family of

critical modes  , the solutions in Eq. (47) asymptotically satisfy
(

�̃�𝑗,𝑘
𝑑𝑗,𝑘

)

≃ 𝐯∗𝑒𝜆∗𝑡
∑

(𝑞,�̄�)∈
𝐶+
𝑞,�̄�𝑒

2𝜋i(𝑞𝑗+�̄�𝑘), (51)

where 𝜆∗, 𝐯∗ and  are all functions of 𝜖. It is then clear that the long
term behaviour of this solution is dependent on the amplitudes of the
Fourier components in Eq. (51), which in turn depend on the initial
conditions of the problem. In fact, since 𝐯∗𝑒𝜆∗𝑡 is independent of (𝑞, �̄�)
and |𝑒2𝜋i(𝑞𝑗+�̄�𝑘)

| = 1, the relative amplitude is given by 𝐶+
𝑞,�̄�, which is

implicitly determined by

𝐶+
𝑞,�̄�𝐯

+
𝑞,�̄� + 𝐶−

𝑞,�̄�𝐯
−
𝑞,�̄� =

(

𝜉𝑞,𝑝(0)
𝜂𝑞,𝑝(0)

)

(52)

= 1
𝑁𝑀

𝑁
∑

𝑗=1

𝑀
∑

𝑘=1

(

�̃�𝑗,𝑘(0)
𝑑𝑗,𝑘(0)

)

𝑒−2𝜋i(𝑞𝑗+�̄�𝑘). (53)

Hence, depending on the choice of the initial conditions and con-
sequently, 𝐶+

𝑞,�̄�, the long-term behaviour of the solution could yield
different patterns and cell types. Similar to the analysis in [19], the
generic pattern predicted by linear stability analysis might yield more
than two cell types, depending on the choices of 𝐶+

𝑞,�̄�. Away from
the bifurcation, cells usually opt for one of two possible fates, where,
approximately, (𝑛, 𝑑) ∈ {(0, 1), (1, 0)}. Therefore nonlinear effects are
expected to play a role in determining the number of cell types.
In particular, our model is robust because the final pattern of cell
differentiation is not affected by the specific form of the Hill functions,
as long as the feedback between cells is strong enough, similar to
the lateral inhibition case (𝜖 = 0). Fig. 8 shows the pattern selection
with corresponding fastest growing modes for different values of 𝜖 and
𝐶+
𝑞,�̄� = 1. From the vector in Eq. (51), we simply plot the real part of
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Fig. 8. Pattern selection via LSA: asymptotic solutions.
Eq. (51) decomposes the asymptotic solution to the linearised system in terms corresponding to different minimising modes (𝑞, �̄�). Each solution term is represented on the left of
each of the subfigures (a–f), for different values of 𝜖, while their linearly combined solution is on the right. Due to symmetry, the pattern observed for each single mode (𝑞, �̄�) is
the same for (1 − 𝑞, 1 − �̄�) and thus we omit half of the single mode patterns. Here, 𝐶+

𝑞,�̄� = 1 ∀(𝑞, �̄�). The modes in (d) and (e) are rational approximations of the real values, as
explained in the main text. Other parameter values are shown in Table 1.

the normalised sum values of its second term, corresponding to Delta
activity (determining the opacity of each white cell). When necessary,
and to illustrate the nature of the pattern, we provide rational approxi-
mations of the real values of the minimising (𝑞, �̄�)-wavenumbers. While

we do not expect, from LSA alone, to capture the main mechanisms
required to explain longer wavelength patterns, pattern selection close
to the bifurcations in Fig. 3 may be predicted and explained by such
an analysis. For further results, a nonlinear approach is then required

10
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Fig. 9. Wavenumber level set bifurcation.
Contour plots of Re(𝜆+𝑞,�̄�) as a function of 𝜖 and 𝜑, satisfying 𝐴𝐵 −𝜑 ≤ 1∕𝛺min(𝜖). Here, we consider the critical feedback strength 𝐴𝐵 for each 𝜖, so that, at 𝜑 = 0, 𝐴𝐵 = 1∕𝛺min(𝜖).
White contours are defined by Re(𝜆+𝑞,�̄�) = 0. For 𝜑 = 0, these correspond to the minimisers  , As 𝜑 increases, initially disconnected and progressively larger wavenumber regions
where Re(𝜆+𝑞,�̄�) > 0 emerge, corresponding to different level sets of the coupling function and determining instability robustness.

to extract some more information on the dynamics of such systems and
pattern selection. We discuss both research avenues next.

3.5.1. Bifurcation analysis
In the context of studying long-range Notch-Delta signalling via

protrusions in the 𝜖-Collier model, both theoretical and numerical
approaches can provide valuable insights into the system’s behaviour
near bifurcation points. While theoretical approaches such as centre
manifold and normal form theory [43–46] can be useful, we focus on
a numerical bifurcation analysis, which offers a more practical and
computationally efficient way to study the system’s dynamics [47,48].
By analysing the real part of the eigenvalues of the decoupled linearised
system, we can gain insights into the bifurcation dynamics. In the
case of Notch-Delta signalling, previous work has revealed intricate
bifurcation dynamics in lateral inhibition models without protrusions,
in a three-equation system [15,40,49]. These studies have revealed the
presence of Hopf bifurcations, helping to understand the conditions that
lead to oscillatory and stationary patterns in the signalling dynamics.
In other work, also in a three-equation context, pitchfork bifurcations
were shown to occur over critical values of Notch and Delta production
rates, where antihexagon patterns emerged [50]. Bifurcations under
long-range signalling were also studied by Chen et al. [51], to show
that the neural pattern in Ciona may be explained and reproduced by
a Notch-mediated gradient of long-range signalling. In our case, when
𝜈 = 1, the eigenvalues of the decoupled linearised system are given by

𝜆±𝑞,�̄� = −1 ±
√

𝛺𝑏. (54)

We can then study the bifurcation dynamics by varying the parameter
𝛺𝑏 ≡ 𝐴𝐵𝛺𝑞,�̄�. The real part of the eigenvalues determines the stability
of the fixed point and the nature of the bifurcation. As we vary 𝛺𝑏, we
can observe the following bifurcation behaviour: When 𝛺𝑏 < 1, both
eigenvalues have negative real parts, which indicates a stable fixed
point. No bifurcation occurs in this region. When 𝛺𝑏 = 1, one of the
eigenvalues has a real part equal to zero, marking a transition point
where a bifurcation may occur. When 𝛺𝑏 > 1, one eigenvalue has a
positive real part, and the other has a negative real part. This scenario
corresponds to an unstable fixed point and indicates the presence of a
saddle–node bifurcation.

While this holds in the frequency domain, stability around non-
hyperbolic equilibria in the full nonlinear system is more complex. To

better understand the dynamics around the bifurcation, we can plot
the real part of the eigenvalues for varying neighbouring values of 𝐴𝐵,
with fixed critical 𝛺𝑞,�̄� (Fig. 9). This approach allows us to visualise
the changes in the stability of the system as the bifurcation parameter
𝐴𝐵 varies, providing insights into the nature of the bifurcation and the
behaviour of the system near the critical point. By analysing the real
part of the eigenvalues for different values of 𝐴𝐵, we can identify the
transition point where a bifurcation occurs.

In the region near the bifurcation, we can virtually decrease the
region of instability, approaching the bifurcation from an unstable
region. In the context of pattern and wavenumber selection, this anal-
ysis is particularly useful, since it allows us to improve the predictive
power of linear stability analysis, making it more likely that our nu-
merical simulations will accurately capture the dynamics of the system
near the critical point. In Fig. 10, we show numerical simulations
of the 𝜖-Collier model around multiple bifurcation points, where LSA
is expected to predict pattern selection. In particular, we consider
triples (𝑟𝑡, 𝑏, 𝜖) near the bifurcations defined in Fig. 3. We take (𝑟𝑡, 𝑏) ∈
{(10, 102), (102, 10), (105, 101.3)}.

In the vicinity of these parameter values, LSA effectively discerns
the intrinsic dynamics governing pattern selection within the 𝜖-Collier
model. For instance, while small 𝜖 values appear to ensure sparse
patterning away from these points, numerical simulations are con-
sistent with wavelength selection via LSA for 𝜖 < 0.4. Under these
conditions, we anticipate short-ranged 3-period patterns to occur along
the primary hexagonal axes, as illustrated in the first two columns
of Fig. 10. As 𝜖 surpasses the bifurcation threshold (𝜖 = 0.4), the
expression of directional clustering (stripes) and multiple cell types
becomes increasingly dominant, owing to the diminishing strength of
lateral inhibition in comparison to long-range signalling. This is also
predicted by the linear analysis.

3.6. Multiscale methods

In addition to numerical bifurcation analysis, multiple scales meth-
ods can be used to further investigate the weakly nonlinear dynamics of
the system [52–55]. These techniques involve the analysis of different
timescales and spatial scales in the model, allowing for the identifica-
tion of slow and fast dynamics and their interactions. Such an approach
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Fig. 10. Numerical simulations close to bifurcations.
Different patterns emerge around bifurcations. Here, we take ℎ = 𝑘 = 6 and consider three different parameter values near the bifurcations in Fig. 3, for varying 𝜖:
(𝑟𝑡 , 𝑏) ∈ {(10, 102), (102 , 10), (105 , 101.3)} (𝑙𝑜𝑔10𝑟𝑡 , 𝑙𝑜𝑔10𝑏 is shown on the y-axis). For 𝜖 < 0.4, 3-period patterns are expected to emerge along the two main hexagonal axes, as predicted
by LSA. In particular, around (𝑟𝑡 , 𝑏) ≃ (10, 102), antihexagon patterns seem to emerge, as discussed in [50]. For intermediate values of 𝜖 (0.4 < 𝜖 < 0.6), high trans-interactions
strength (𝑟𝑡) seems to ensure the robustness of sparser patterns, even close to a bifurcation, as seen at (𝑟𝑡 , 𝑏) ≃ (105 , 101.3). Clustering of Delta-expressing cells becomes gradually
more evident as 𝜖 increases, supported by the relatively large long-range signalling weighting, compared to lateral-inhibition. Multiple cell types are expected across a wide range
of 𝜖 values, due to high-level branching of steady state solutions. 𝑟𝑡 and 𝑏 are correlated with 𝜑 via Eq. (21)–Eq. (22). Opacity levels are normalised at each simulation, and
therefore white does not necessarily correspond to Delta activity equal to 1. The homogeneous steady states for each parameter pair are shown in Table 1.

can provide valuable insights into the complex behaviour of the long-
range Notch-Delta signalling via protrusions, informing experimental
studies and contributing to a better understanding of the signalling
dynamics in biological systems. We discuss a brief application of such
methods to our model, as well as their limitations.

Following Remark 1.1 in SN1, we aim to derive a continuum model
upon the discrete model, so that we solve the decoupling issue with
standard weakly nonlinear stability analysis (WNSA) on a translation-
ally invariant system (see SN2). To do so, a homogenisation process
must be employed. We follow the framework in [56,57]. For a hexag-
onal arrangement of cells, we denote the distance between cell centres
by 𝛿 ≪ 1, introduce a slowly-varying continuum variable 𝐱 = 𝛿𝑖𝐯,
𝐯 ∈ R2, and express the levels of Delta and Notch activity using the
multiscale representation 𝑛𝑖(𝑡) = 𝑛(𝑡, 𝐱) and 𝑑𝑖(𝑡) = 𝑑(𝑡, 𝐱), where 𝑖
represents the fast spatial variable and 𝐱 represents the slow spatial
variable. Second-order Taylor expanding in two variables leads to

𝑑𝑖+1(𝑡) ≃ 𝑑(𝑡, 𝐱 + 𝛿𝐯) (55)

≃ 𝑑(𝑡, 𝐱) + 𝛿∇𝐱𝑑(𝑡, 𝐱) ⋅ 𝐯 +
𝛿2

2
𝐯𝑇𝐇𝑑 (𝐱)𝐯, (56)

where ∇𝐱 and 𝐇𝑑 are the (spatial) gradient and Hessian of 𝑑, respec-
tively. We are interested in studying the dynamics of Delta across
different directions. Without loss of generality, take the distance be-
tween any two adjacent cell centres to be 1. Hence, the relevant
directions in our homogenisation correspond to the vectors between
cell centres. Namely, with

𝐔1 =
{(

cos
(𝑘𝜋

3

)

, sin
(𝑘𝜋

3

))}

1≤𝑘≤6
(57)

𝐔2 =
{(

cos
(𝑘𝜋

3
+ 𝜋

6

)

, sin
(𝑘𝜋

3
+ 𝜋

6

))}

1≤𝑘≤6
, (58)

we define the following sets of vectors:

• First neighbour vectors (𝑅1): 𝐕1 = 𝐔𝟏;
• Second neighbour vectors (𝑅2): 𝐕2 = 2𝐔1 ∪

√

3𝐔2.

Due to hexagonal symmetry, we have
∑

𝐯∈𝐕1

𝑑(𝑡, 𝐱 + 𝛿𝐯) ≃ 6𝑑(𝑡, 𝐱) + 3𝛿2
2

∇2
𝐱𝑑(𝑡, 𝐱) (59)

∑

𝐯∈𝐕2

𝑑(𝑡, 𝐱 + 𝛿𝐯) ≃ 12𝑑(𝑡, 𝐱) + 21𝛿2
2

∇2
𝐱𝑑(𝑡, 𝐱), (60)

where ∇2
𝐱 is the (spatial) Laplacian. Hence,

⟨𝑑𝑖⟩ ≃
1 − 𝜖
6

∑

𝐯∈𝐕1

𝑑(𝑡, 𝐱 + 𝛿𝐯) + 𝜖
12

∑

𝐯∈𝐕2

𝑑(𝑡, 𝐱 + 𝛿𝐯) (61)

≃ 𝑑(𝑡, 𝐱) + 𝛿(𝜖)∇2
𝐱𝑑(𝑡, 𝐱) + (𝛿4), (62)

where 𝛿(𝜖) ≡ 𝛿2(2 + 5𝜖)∕8. The goal is now to study the equations at
the timescale on which spatial coupling enters at (𝛿), which can be
achieved with 𝜏 = 𝛿𝑡. Setting 𝐴(𝑡) ≡ 𝛿(𝜖) in Eq. (S83) yields 𝑏𝑚 = 0, ∀𝑚
and so, in this case, Eq. (S131)–Eq. (S134) simplify to (see SN2 for full
derivation details)

𝟎 = 𝐉(𝐮∗)𝐯1 (63)

𝟎 = 𝐉(𝐮∗)𝐯2 +
1
2

(

𝐯𝑇1 𝐇1(𝐮∗)𝐯1
𝐯𝑇1 𝐇2(𝐮∗)𝐯1

)

(64)

𝟎 = 𝐉(𝐮∗)𝐯3 +
1
2

(

𝐯𝑇2 𝐇1(𝐮∗)𝐯1
𝐯𝑇2 𝐇2(𝐮∗)𝐯1

)

+ 1
6
(𝐷3𝐅)𝐮∗ [(𝐯1)3], (65)
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Fig. 11. Bifurcation diagrams in the 𝜖-Collier model.
Bifurcation diagram for a 5-cell periodic system via the 𝜖-Collier model. The homoge-
neous steady state 𝑛∗ is shown in red for each case. (a) Steady states 𝑛 for varying
𝜖, with ℎ = 𝑘 = 2, 𝑎 = 10−1, and 𝑏 = 104. 𝑛∗ ≃ 0.03848, for all 𝜖. At 𝜖 = 0.5, first and
second neighbours equally contribute to signalling. (b) Steady states 𝑛 for varying 𝑎,
with 𝜖 = 0.2, ℎ = 𝑘 = 2, and 𝑏 = 104.

where 𝐮 ≡ (𝑛, 𝑑). We are then looking for solutions of the form

𝐮(𝑡) = 𝐮∗ + 𝐯1𝛿(𝜖) + 𝐯2𝛿(𝜖)2 + 𝐯3𝛿(𝜖)3 + 𝑂(𝛿4). (66)

The case 𝜖 = 0 was discussed in [57] for 3-period patterns along
the main hexagonal axes. In this case, three distinct cell types were
considered. For 𝜖 > 0, however, there is a dramatic rise in mathematical
complexity as a result of the variety of new patterning possibilities.
In particular, it becomes challenging to track the perturbations around
bifurcations, as these drastically increase in number. To illustrate the
complexity induced by long-range signalling, we consider a simplified
model along one of the main hexagonal axes. Considering a 5-cell
system with periodic boundary conditions (so that 𝑅2 is now a non-
overlapping pair of second-neighbours), we plot the bifurcation dia-
grams under variation of 𝜖 and 𝑎 (Fig. 11). Here, we do not distinguish
between stable and unstable states, but multiple pitchfork bifurcations
are expected from 𝐴𝐵 < 1∕𝛺min. The case ℎ > 2 is computationally
more demanding to solve and does not invalidate the discussion here.
The homogeneous steady states are shown in red. The various branches
reveal the difficulty in performing multiscale analysis on our particular
system. While 5-period patterns may be expected from linear analysis
(Fig. 8(d)), applying multiscale methods to our wavelength selection
is, in general, a challenging task, which adds to the contrast between
lateral-inhibition models and a model of long-range signalling such as
the 𝜖-Collier model.

Overall, multiple scale analysis is a powerful technique for studying
systems with distinct temporal or spatial scales. However, its appli-
cation to systems with numerous bifurcations is debatable, due to

the complexity of bifurcations, sensitivity to initial conditions, and
parameter dependence, which is more pronounced in a model like ours.
Bifurcations introduce intricate behaviours that blur the boundaries
between scales, while the sensitivity to initial conditions and parameter
dependence makes it difficult to determine appropriate scales for anal-
ysis. To overcome these limitations, future work could focus on design-
ing adaptive multiscale techniques that dynamically adjust to evolving
system dynamics, in general lattices and signalling networks [58,59].

In the supplementary information, and motivated by reaction–
diffusion systems, we explore a possible application of WNSA to pat-
terning derived from long-range signalling, and discuss its limitations
in our system’s coupling dynamics [17,60–62]. Compared to LSA, and
as detailed in SN2, decoupling seems mathematically unfeasible in the
case of translationally invariant Notch-Delta signalling systems, given
the complexity generated by the higher-order terms. Any decoupling
methodology as systematic as the linear case seems to be out of reach
within our framework.

4. Discussion

In this work, we have outlined some of the main tools for analysing
a general long-range signalling model. We developed such a model by
taking a relative signalling approach. Long-range signalling via filopo-
dia is weighted by a parameter 𝜖, while the juxtacrine contribution is
weighted by 1− 𝜖. This constitutes the 𝜖-Collier model, understood as a
long-range extension of the original Collier model [19]. We found that
sparser patterns on periodic hexagonal lattices are robust and tend to
emerge for a wide range of 𝜖 values. To comprehend the linear effects
of long-range signalling, we first employed a linear stability analy-
sis for generally coupled and translationally invariant systems (SN1),
followed by a direct application to the 𝜖-Collier model. We explored
various protrusion modelling frameworks, including short- and long-
range protrusions, and stochastic protrusion dynamics. We discovered
that patterning timing is highly dependent on 𝜖, as supported by our
stability analysis.

Overall, LSA proved to be a useful tool for identifying the fastest-
growing modes under Fourier analysis, and, in addition to solely jux-
tacrine models, LSA was able to predict short and sparse patterning
across a broad range of 𝜖 values. In particular, we examined parameters
closer to the bifurcation point at which the homogeneous state becomes
linearly unstable (dashed lines in Fig. 3). Here, it was anticipated that
the model behaves more linearly; hence, LSA may match the simulation
outcomes better, which we confirmed with numerical simulations for
specific critical bifurcation neighbourhoods. If this does not occur, it
may indicate we are near a subcritical bifurcation (as opposed to a
supercritical one), and when a subcritical bifurcation occurs, LSA does
not necessarily predict the patterning outcome [63,64]. Away from
critical points, nonlinear effects play a significant role in sparse pattern
selection and alternative methods were discussed, including multiple
scales methods and weakly nonlinear stability analysis inspired by
reaction–diffusion literature.

Multiple scales methods have proven to be indispensable tools for
investigating Notch-Delta signalling, as they facilitate the analysis of
the complex interplay between molecular interactions and cellular
behaviour across spatial and temporal scales [56,57]. These meth-
ods elucidate the intricate dynamics of signalling networks, which
can become mathematically intractable as the network expands, and
demonstrated by the increasing number of steady-state bifurcations
in the case of the 𝜖-Collier model. Furthermore, these methods often
involve bridging the gap between discrete and continuum descrip-
tions of cellular processes, taking into account stochastic fluctuations,
reaction–diffusion kinetics, and the spatial organisation of signalling
components. The continuum approach requires a thorough rethinking
of the 𝜖 parameter, which determines the relative signalling strength
between lateral inhibition and protrusion-based signalling.

Motivated by the multiscale approach, we devised a framework
for weakly nonlinear stability analysis in order to achieve expanded
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qualitative conclusions on wavelength selection in Fourier-transformed
coupling functions. Specifically, we presented the main methodology
behind a potential framework for WNSA of translationally invariant
Notch-Delta systems. We expanded well-known reaction–diffusion tech-
niques to coupled spatially discrete systems, such as the 𝜖-Collier
model on a periodic hexagonal lattice, by considering harmonic-based
Landau-type solutions. We found that the decoupling mechanism in
translationally invariant systems appears impractical in WNSA.

Ultimately, this work outlines a framework for understanding pat-
tern formation in relatively general long-range signalling systems, high-
lighting some of the primary mathematical challenges in such a theory
and indicating possible generalisations and future research avenues, in
the context of both linear and weakly nonlinear methodologies. Fur-
thermore, the single-parameter adaptability of the 𝜖-Collier model en-
compasses a whole family of long-range signalling phenomena, which
can be adjusted for a variety of modelling approaches. Our findings
have significant implications for understanding the behaviour of natu-
ral systems, such as the SOP patterning in the fly notum and the skin
patterns of different danio species, where sparse patterns are observed.
In particular, the 𝜖-Collier model will be adapted in a subsequent
publication to study the emergence of sensory organ precursors on
the wing pouch of Drosophila melanogaster during the late third instar,
which is a crucial aspect of wing development.

The fact that such patterns arise for a broad range of 𝜖 values
suggests that the interplay between long-range signalling and juxtacrine
contribution plays a key role in cell fate commitment. Understanding
its underlying dynamics could be useful for developing new strategies
to monitor or control patterning in biological systems, such as tissue
engineering or regenerative medicine.

5. Computational methods

5.1. Simulations

All simulations were performed using Interactive Epithelium (IEp), a
Wolfram Mathematica tool for hybrid Notch-Delta epithelial signalling
and patterning simulations. IEp aims to provide a practical tool for test-
ing parameter robustness while simulating the dynamics of the Notch-
Delta signalling pathway in an epithelium. Table 1 in Supplementary
Note 3 contains the precise parameter values for the simulation plots
shown in this work.

5.2. Code availability

The source code and data that were used to develop the main
conclusions and analyses presented in this work are available on the fol-
lowing repository hosted on GitHub: https://github.com/fberkemeier/
Notch-Delta-Coupling.git. The relevant video simulations can also be
found in this repository. Previous versions are available upon request.
For any comments/suggestions, as well as copyright issues, please
contact fp409@cam.ac.uk.
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Supplementary Information

Supplementary Note 1: Linear stability analysis
This section provides an introductory and fairly general approach to linear stability analysis (LSA). First, we discuss
the main methods used in LSA and present some examples and applications, leading to the main study case: the
Notch-Delta signalling pathway, in the main text. Many of the methodologies outlined here can be found in a variety
of textbooks and should be familiar to most readers, but we opt for a self-contained approach to better shape the
narrative towards the particular analysis of Notch-Delta signalling systems.

One-dimensional array
We start by looking at the one-dimensional periodic array consisting of N cells with two species x and y, in which
concentrations in cell j are governed by

ẋj = Fx(xj ,{xr},yj ,{yr}) (S1)

ẏj = Fy(xj ,{xr},yj ,{yr}), (S2)

where Fx and Fy are general nonlinear functions. Here, {xr} and {yr} are the sets of all the variables corresponding
to cells that are not cell j. That is, r ̸= j. We use j as the focal cell index instead of i to avoid confusion with
the imaginary number i, though indexation with i is interchangeably used in the following sections and main text.
Eq. (S1)-Eq. (S2) is translationally invariant, implying that the system written in matrix form, for all cells, contains a
banded circulant matrix. Note that we have a total of 2N equations. A homogeneous steady state of the system,
(x∗,y∗), requires ẋj = ẏj = 0 when (xj ,yj) = (x∗,y∗), for any cell j. This results in the homogeneous system

0 = Fx(x∗,{x∗},y∗,{y∗}) (S3)

0 = Fy(x∗,{x∗},y∗,{y∗}). (S4)

Next, we perturb this solution by setting (xj ,yj) = (x∗ + x̃j ,y∗ + ỹj) and, following linearisation, we get

d

dt

(
x̃j

ỹj

)
≃ J

(
x̃j

ỹj

)
+
∑
r ̸=j

Jr

(
x̃r

ỹr

)
, (S5)

where

J =
(

∂Fx
∂xj

∂Fx
∂yj

∂Fy

∂xj

∂Fy

∂yj

)∣∣∣∣∣
(x∗,y∗)

and Jr =
(

∂Fx
∂xr

∂Fx
∂yr

∂Fy

∂xr

∂Fy

∂yr

)∣∣∣∣∣
(x∗,y∗)

. (S6)

Expanding the previous expressions, we rewrite the linearised system as

d

dt

(
x̃j

ỹj

)
=
(

J11x̃j +J12ỹj +
∑

r ̸=j [Jr
11x̃r +Jr

12ỹr]
J21x̃j +J22ỹj +

∑
r ̸=j [Jr

21x̃r +Jr
22ỹr]

)
. (S7)

Next, we decouple the system of 2N equations by performing a discrete Fourier transform with respect to j and
changing the variables as follows, for 1 ≤ q ≤ N ,

x̃j =
N∑

q=1
ξqe2πiqj/N (S8)

ỹj =
N∑

q=1
ηqe2πiqj/N , (S9)

which may also be written as

ξq = 1
N

N∑
j=1

x̃je−2πiqj/N (S10)

ηq = 1
N

N∑
j=1

ỹje−2πiqj/N . (S11)
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Eq. (S8) and Eq. (S9) are Fourier transforms in the exponential form (Bracewell and Bracewell, 1986). In order to
rewrite the system for (ξq,ηq), start by differentiating ξq and substituting in Eq. (S7), as follows, with q̄ ≡ q/N ,

dξq

dt
= 1

N

N∑
j=1

dx̃j

dt
e−2πiq̄j (S12)

= 1
N

N∑
j=1

J11x̃j +J12ỹj +
∑
r ̸=j

[Jr
11x̃r +Jr

12ỹr]

e−2πiq̄j (S13)

= J11
N

N∑
j=1

x̃je−2πiq̄j + J12
N

N∑
j=1

ỹje−2πiq̄j + 1
N

N∑
j=1

∑
r ̸=j

[Jr
11x̃r +Jr

12ỹr]e−2πiq̄j (S14)

= J11ξq +J12ηq + 1
N

N∑
j=1

∑
r ̸=j

[Jr
11x̃r +Jr

12ỹr]e−2πiq̄j , (S15)

where we used the definitions in Eq. (S10) and Eq. (S11). The third term of Eq. (S15) requires more thought. The
goal is to write it in terms of ξq exclusively. Let us focus on the terms involving x̃r first. Take r = j + ∆j, ∆j ∈ S,
where S is the set of all integers such that j + ∆j is an index of a cell and ∆j ̸= 0. Notice that the indexation of
Jr

11 = Jj+∆j
11 is always relative to ∆j and therefore constant on j (Fx and Fy do not change with j). Thus we may

take Jr
11 ≡ J∆j

11 and write

1
N

N∑
j=1

∑
r ̸=j

Jr
11x̃re−2πiq̄j =

∑
∆j∈S

J∆j
11

1
N

N∑
j=1

x̃j+∆je−2πiq̄j =
∑

∆j∈S

J∆j
11 ξqe2πiq̄∆j . (S16)

The last equality is obtained by seeing that, excluding the sum over ∆j, we have

1
N

N∑
j=1

x̃j+∆je−2πiq̄j = e2πiq̄∆j

N

N∑
j=1

x̃j+∆je−2πiq̄(j+∆j) (S17)

= e2πiq̄∆j

N

N∑
j=1

x̃je−2πiq̄j (S18)

= ξqe2πiq̄∆j , (S19)

where we used the fact that we are working on the Z/N ring, thus x̃j = x̃j+N and the sum term is N -periodic. We
apply a similar analysis to ỹ. This shows that any term involving x̃j+∆j or ỹj+∆j , ∀∆j ∈ S, can be transformed into
a linear term involving ξq or ηq, respectively. Hence, we have that

1
N

N∑
j=1

∑
r ̸=j

[Jr
11x̃r +Jr

12ỹr]e−2πiq̄j =
∑

∆j∈S

[
J∆j

11 ξq +J∆j
12 ηq

]
e2πiq̄∆j (S20)

= ξq

∑
∆j∈S

J∆j
11 e2πiq̄∆j +ηq

∑
∆j∈S

J∆j
12 e2πiq̄∆j . (S21)

We may say that such linearisation leads to four functions that take into account the spatial coupling terms of each
equation, depending solely on q. In matrix form, such functions can be captured by

Ωq̄ ≡ Ωq̄(q) =
∑

∆j∈S

(
J∆j

11 e2πiq̄∆j J∆j
12 e2πiq̄∆j

J∆j
21 e2πiq̄∆j J∆j

22 e2πiq̄∆j

)
=
∑

∆j∈S

J∆je2πiq̄∆j . (S22)

In general, it is then possible to rewrite Eq. (S1)-Eq. (S2) with respect to (ξq,ηq) to get the following system of
constant-coefficient linear differential equations

ξ̇q = Fξ(ξq,ηq) ≃ (J11 +Ωq̄11)ξq +(J12 +Ωq̄12)ηq (S23)

η̇q = Fη(ξq,ηq) ≃ (J21 +Ωq̄21)ξq +(J22 +Ωq̄22)ηq (S24)

or simply

d

dt

(
ξq

ηq

)
≃ Lq̄

(
ξq

ηq

)
, (S25)
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where Lq̄ = J+Ωq̄. The general solution of Eq. (S25) is then given by(
ξq

ηq

)
= C+

q̄ v+
q̄ e

λ+
q̄ t +C−

q̄ v−
q̄ e

λ−
q̄ t

, (S26)

where λ±
q̄ and v±

q̄ are the eigenvalues and eigenvectors of Lq̄. C+
q̄ and C−

q̄ are constants depending on the initial
conditions of the problem (note that they are different for each q, since each yields a separate system). We have

λ±
q̄ =

τq̄ ±
√

τ2
q̄ −4σq̄

2 (S27)

= 1
2

(
Lq̄11 +Lq̄22 ±

√
(Lq̄11 +Lq̄22)2 −4(Lq̄11Lq̄22 −Lq̄12Lq̄21)

)
, (S28)

where, in this case,

τq̄ = Tr(Lq̄) = Lq̄11 +Lq̄22 (S29)

σq̄ = det(Lq̄) = Lq̄11Lq̄22 −Lq̄12Lq̄21. (S30)

The solution of Eq. (S5) follows by applying the variable change Eq. (S8)-Eq. (S9) to the previous solution, leading
to (

x̃j

ỹj

)
=

N∑
q=1

[
C+

q̄ v+
q̄ e

λ+
q̄ t +C−

q̄ v−
q̄ e

λ−
q̄ t
]

e2πiq̄j . (S31)

We argue that a homogeneous steady state (x∗,y∗) is linearly stable if and only if Re(λ±
q̄ ) < 0, ∀q. We are now

interested in studying what happens to the patterning solutions as t → ∞. The real parts of the eigenvalues charac-
terise the exponential growth rate along the eigenvectors, and so, if Re(λ±

q̄ ) < 0, ∀q̄, perturbations do not grow and
the homogeneous solution is linearly stable. In contrast, the maximum value of Re(λ±

q̄ ) indicates the fastest growing
mode or wavelength q̄ at the onset of instability. When such a value is positive, the homogeneous state is linearly
unstable, and a pattern with the characteristic wavelength of the set of modes q̄ that maximise Re(λ±

q̄ ) arises for
small t. For large t, we expect a dominant pattern to emerge and a consequent simplification of Eq. (S31) given by
the superposition of the fastest growing modes, although this may not be true if nonlinearities determine emergent
patterning. This translates into a maximisation problem over all q̄ (note that N , in this case, is simply a refinement of
the discretisation and, therefore, does not affect the maximisation problem). That is, we want to solve

max
q̄

Re(λ+
q̄ ) = max

q̄
Re

τq̄ +
√

τ2
q̄ −4σq̄

2

 (S32)

= 1
2 max

q̄
Re
[
Lq̄11 +Lq̄22 +

√
(Lq̄11 +Lq̄22)2 −4(Lq̄11Lq̄22 −Lq̄12Lq̄21)

]
. (S33)

Since J is independent of q̄, we only need to look into optimising the terms involving Ωq̄. This may be hard in
general, but, despite the complexity in Eq. (S33), the coupling terms regard only the terms Ωq̄12 and Ωq̄21 in many
applications, as we will see in Example 1.1 and the case of Notch-Delta below. Once the set of fastest-growing
modes (maximisers) W is obtained, the sum in Eq. (S31) is restricted to this set and becomes, asymptotically,(

x̃j

ỹj

)
≈ v∗eλ∗t

∑
q̄∈W

C+
q̄ e2πiq̄j , (S34)

where λ∗ is the growth rate corresponding to the fastest growing mode (eigenvalue with the largest real part) and v∗

its corresponding eigenvector. Small perturbations grow exponentially on a time scale of order 1/Re(λ∗).

Two-dimensional array
Consider now a N ×M two-dimensional lattice where each cell is labelled by (j,k), with 1 ≤ j ≤ N,1 ≤ k ≤ M . We
ignore the lattice shape for now. Again, we study the dynamics of two species x and y. Notice first that the main
difference between this case and the one-dimensional array studied before is that now our decoupling and change
of variables must account for two indices as well. Therefore, we relabel j ≡ (j,k) in our previous analysis and aim to
solve the system

ẋj,k = Fx(xj,k,{xr},yj,k,{yr}) (S35)
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ẏj,k = Fy(xj,k,{xr},yj,k,{yr}), (S36)

where r ̸= (j,k). Linearisation leads to

d

dt

(
x̃j,k

ỹj,k

)
≃ J

(
x̃j,k

ỹj,k

)
+

∑
r ̸=(j,k)

Jr

(
x̃r

ỹr

)
. (S37)

Using the two-dimensional Fourier transform, we may change the variables to get, for 1 ≤ q ≤ N and 1 ≤ p ≤ M ,

x̃j,k =
N∑

q=1

M∑
p=1

ξq,pe2πi(qj/N+pk/M) (S38)

ỹj,k =
N∑

q=1

M∑
p=1

ηq,pe2πi(qj/N+pk/M), (S39)

with inverted transform given by

ξq,p = 1
MN

M∑
k=1

N∑
j=1

x̃j,ke−2πi(qj/N+pk/M) (S40)

ηq,p = 1
MN

M∑
k=1

N∑
j=1

ỹj,ke−2πi(qj/N+pk/M). (S41)

Following the steps in the previous section, we easily see that the spatial coupling function is now given by

Ωq̄,p̄ ≡ Ωq̄,p̄(q,p) =
∑

∆jk∈S

J∆jke2πi(q̄∆j+p̄∆k), (S42)

where (q̄, p̄) = (q/N,p/M) and ∆jk = (∆j,∆k). In this case, we took r = (j + ∆j,k + ∆k), (∆j,∆k) ∈ S, where
S is now the set of all pairs of integers such that (j + ∆j,k + ∆k) is an index of a cell and (∆j,∆k) ̸= (0,0). J∆jk

is given, as before, by Eq. (S6). One interesting aspect of this generalised analysis is that it is independent of the
lattice shape, as long as the connectivity matrix corresponds to a regular graph (S is independent of indexes). Notice
that a generalisation to any spatial dimension follows easily from this step. The particular case when weighting is
symmetric is discussed in Example 1.1. We then obtain the system

d

dt

(
ξq,p

ηq,p

)
≃ Lq̄,p̄

(
ξq,p

ηq,p

)
, (S43)

where Lq̄,p̄ = J+Ωq̄,p̄. The general solution of Eq. (S43) is then given by(
ξq,p

ηq,p

)
= C+

q̄,p̄e
λ+

q̄,p̄tv+
q̄,p̄ +C−

q̄,p̄e
λ−

q̄,p̄tv−
q̄,p̄, (S44)

where λ±
q̄,p̄ and v±

q̄,p̄ are the eigenvalues and eigenvectors of the matrix Lq̄,p̄. C+
q̄,p̄ and C−

q̄,p̄ are constants depending
on the initial conditions of the problem. The solution to Eq. (S37) is then given by(

x̃j,k

ỹj,k

)
=

N∑
q=1

M∑
p=1

[
C+

q̄,p̄e
λ+

q̄,p̄tv+
q̄,p̄ +C−

q̄,p̄e
λ−

q̄,p̄tv−
q̄,p̄

]
e2πi(q̄j+p̄k). (S45)

Similar to the one-dimensional case, the fastest growing modes are obtained by maximizing the real part of the
growth rates over q̄ and p̄, and the asymptotic behaviour of the solution of the linearised problem is dominated by
the terms corresponding to the fastest growing modes(

x̃j,k

ỹj,k

)
≈ v∗eλ∗t

∑
(q̄,p̄)∈W

C+
q̄,p̄e2πi(q̄j+p̄k), (S46)

where λ∗ is the growth rate corresponding to the fastest growing modes, which comprise W , and v∗ its correspond-
ing eigenvector. When nonlinearities affect the solution, we do not expect, in general, solutions of the form Eq. (S46)
to arise in the full nonlinear system. The two-dimensional system will be the main focus in this paper.
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(a) (b)

Figure S1. Reaction-diffusion systems mimic juxtacrine signalling.
(a) Lateral inhibition patterning. (b) Soliton-type patterning via the Gray-Scott Model of a reaction-diffusion system resembles
lateral inhibition on a hexagonal lattice (sketched in green). Here F = 0.03, κ = 0.062 and Dn = 2Dd.

Remark 1.1 (Continuum limit and reaction-diffusion systems) Feedback interactions between morphogens (un-
derstood as long-range diffusible ligands in many contexts (Lawrence and Struhl, 1996; Vincent and Briscoe,
2001; Tabata and Takei, 2004)) have previously been discussed by Alan Turing regarding skin patterning in
his famous paper (Turing, 1952). Many of the patterns discussed in this work share similar features with the
type of patterns expected from long-range signalling via filopodia (Meinhardt, 2003, 2008; Kondo, 2009). While
diffusion is a linear process where the flux is proportional to the concentration gradient of morphogens, discrete
lattice-based long-range signalling imposes nonlinear effects on patterning, often due to the production functions
(Hill functions in our case). Nonetheless, as suggested in Binshtok and Sprinzak (2018); Hamada et al. (2014),
the mathematical equivalence between the two approaches is worth noticing.
Consider the one-dimensional translationally invariant system given by

dui

dt
= f(ui,vi−1,vi+1) (S47)

dvi

dt
= g(ui,vi). (S48)

By considering the continuum limit ui → u(i∆) (and similarly for vi), we get

∂u(t,x)
∂t

= f(u(t,x),v(t,x−∆),v(t,x+∆)) (S49)

∂v(t,x)
∂t

= g(u(t,x),v(t,x)). (S50)

Expanding to second order in ∆ leads to
∂u(t,x)

∂t
≃ f(u(t,x),v(t,x)−∆∂xv + 1

2∆2∂xxv,v(t,x)+∆∂xv + 1
2∆2∂xxv) (S51)

∂v(t,x)
∂t

= g(u(t,x),v(t,x)). (S52)

A consistent expansion of f will lead to the reaction-diffusion form, possibly with a convection (∂x) term (in
the general case). If, for example, f(ui,vi−1,vi+1) = vi−1 +vi+1, we may identify vi−1 +vi+1 ∼ 2v +h∂xxv, for
some small h ≡ ∆2.
Figure S1 compares a simulation of the Collier model with the Gray-Scott model of reaction-diffusion (Doelman
et al., 1997; McGough and Riley, 2004), given by

∂n

∂t
= −nd2 +F(1−n)+Dn∇n (S53)

∂d

∂t
= nd2 − (F +κ)d+Dd∇d, (S54)

where F is the feed rate, κ is the kill rate and Dn and Dd are the diffusion rates. Lateral inhibition is mimicked
for specific ranges of such rates. Sparser patterns might be expected under similar regimes.

Examples
So far, we have been discussing linear stability methods in a fairly general way. This section discusses coupling
simplifications based on symmetry and presents an application to a one-dimensional system. The two-dimensional
case will be studied in the particular case of Notch-Delta signalling.
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Example 1.1 (Simplification of coupling functions) In many cases, the coupling functions Ωq̄ can be simplified
under specific conditions. In the one-dimensional ring, for example, if the dependence on xr, r ̸= j, is given as
a sum of indexed terms corresponding to immediate neighbours, that is, r ∈ {j −1, j +1} (∆j = ±1) and

Fx(xj ,{xr},yj ,{yr}) ≡ Fx(xj−1 +xj+1) (S55)

Fy(xj ,{xr},yj ,{yr}) ≡ Fy(xj ,yj), (S56)

then
J±1 =

(
F ′

x(2x∗) 0
0 0

)
. (S57)

Without loss of generality, take F ′
x(2x∗) = 1. Thus the only non-zero term in Ωq̄ is

Ωq̄11 = e2πiq̄ +e−2πiq̄ = 2cos(2πq̄). (S58)

Generalising to the mth neighbour of cell j, that is, ∆j ∈ Sm ≡ {±m}, leads to

Ωq̄11 = 2cos(2πq̄m). (S59)

Notice now that if we consider Fx of the form Fx

(∑
∆j∈ΣSm xj+∆j

)
, with ΣSm = {±1, ...,±m}, then the

coupling function is easily obtained by summing, up to m, the previous terms. Other simplifications are
possible depending on the nature of J.
In two dimensions, we have more interesting cases to look at. First, depending on the lattice shape, (∆j,∆k)
might mean different things regarding which cells are neighbours of a focal cell (j,k). The analysis, however,
is independent of this. Thus we merely refer to lattice shapes as motivation for the choices of S, as mentioned
before. In a squared lattice, one of two cases is often relevant: either a cell is affected by only 4 neighbours or
all 8 (Figure S2a). In the first case, we take S = {(0,±1),(±1,0)}. Here, we use the notation Ωq̄,p̄ ≡ [Ωq̄,p̄]11
as a simplification (it is irrelevant which variable is affected). Again, we take equally weighted sums of the
neighbours’ terms. In this case, we get, from Eq. (S42),

Ωq̄,p̄ =
∑

∆j∈S

e2πi(q̄∆j+p̄∆k) = 2[cos(2πq̄)+cos(2πp̄)] . (S60)

In the case of the regular hexagonal lattice, we have several labelling possibilities. Using the labelling in Figure
S2b, we get, for immediate neighbours, S = {(±1,0),(0,±1),±(1,1)} and

Ωq̄,p̄ = 2[cos(2πq̄)+cos(2πp̄)+cos(2π (q̄ + p̄))] . (S61)

More generally, if the coupling weights, captured by J∆jk, are symmetric, that is, J∆jk = J∆(−j)(−k), then

Ωq̄,p̄ =
∑

∆jk∈S

J∆jk cos(2π(q̄∆j + p̄∆k)). (S62)

(a) Squared lattice (b) Hexagonal lattice

Figure S2. Cell lattices and relative indexation.
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Example 1.2 (Ring of cells) Consider two species x and y governed by the following equations on a ring of N
cells

dxj

dt
= f

(
yj−1 +yj+1

2

)
+µxj (S63)

dyj

dt
= g(xj)+ρyj , (S64)

where µ,ρ ∈ R. Define

Fx(xj ,yj ,yj−1,yj+1) = f

(
yj−1 +yj+1

2

)
+µxj (S65)

Fy(xj ,yj ,yj−1,yj+1) = g(xj)+ρyj . (S66)

Following linearisation around a homogeneous steady state, the relevant matrices are given by

J =
(

µ 0
g′(xj) ρ

)∣∣∣∣
(x∗,y∗)

=
(

µ 0
g′(x∗) ρ

)
(S67)

J±1 =
(

0 1
2f ′
(

yj−1+yj+1
2

)
0 0

)∣∣∣∣∣
(x∗,y∗)

=
(

0 1
2f ′ (y∗)

0 0

)
. (S68)

In this case, we have S = {−1,1} and J1 = J−1 (not to be confused with the inverse of a matrix). Thus we may
use Eq. (S62) from Example 1.1 and write

Ωq̄ =
∑

∆j∈S

J∆j cos(2πq̄∆j) (S69)

=
(

0 f ′(y∗)(cos(2πq̄)+cos(−2πq̄))
0 0

)
(S70)

=
(

0 2f ′(y∗)cos(2πq̄)
0 0

)
(S71)

and so
Lq̄ = J+Ωq̄ =

(
µ 2f ′(y∗)cos(2πq̄)

g′(x∗) ρ

)
. (S72)

We define the coupling term by Ωq̄ ≡ 2cos(2πq̄) (not to be confused with the matrix counterpart, Ωq̄, in bold)
and let A = f ′(y∗) and B = g′(x∗). In fact, in this case, Ωq̄ = Ωq̄12/A. The eigenvalues of L are then given by

λ±
q̄ = 1

2

(
Lq̄11 +Lq̄22 ±

√
(Lq̄11 +Lq̄22)2 −4(Lq̄11Lq̄22 −Lq̄12Lq̄21)

)
(S73)

= 1
2

(
µ+ρ±

√
(µ+ρ)2 −4(µρ−ABΩq̄)

)
. (S74)

From the previous analysis, the homogeneous solution is linearly stable if and only if µ+ρ < 0 and µρ > ABΩq̄

for all q̄. Maximising Re(λ±
q̄ ) with respect to q̄ relies then on maximising ABΩq̄, since ABΩq̄ > µρ leads to a

heterogeneous solution.
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Remark 1.2 (Euclidean and hexagonal distances)

Figure S3. Hexagonal layout on a neighbourhood of
El Alto, Bolivia.

For a focal cell i (R0), the recursive definition of the sig-
nalling rings Rk as the set of cells that are immediate neigh-
bours of cells in Rk−1 and are not in

⋃k−1
n=1 Rn can be a bit

ambiguous regarding the realistic reach of protrusions and
the regular hexagonal lattice. First, notice that a hexagonal-
Manhattan-type distance, dH(i, j), provides an alternative
definition of such sets in the following way: a cell i is in
Rk if it is not in

⋃k−1
n=1 Rn and dH(i, j) = k (between cell

centres and assuming the Euclidean distance between the
cell centres of two neighbouring cells is 1). dH is hereafter
named the El Alto distance, inspired by the peculiar hexago-
nally shaped urbanisation located in El Alto, Bolivia (Figure
S31).
We recall that we assume signalling between a cell and any
of its non-immediate neighbours occurs if it is within reach
of protrusions. That is, if the Euclidean distance between both cell centres, dE(i, j), is less than a certain fixed
threshold. It is then possible to write an equivalent definition of Rk using the Euclidean distance by defining
the threshold k −1 < dE(i, j) ≤ k. However, this is only valid up to a specific value of k, so there is an important
geometric difference between distances dH and dE on the hexagonal lattice.
In other words, above a specific k, the distance thresholds define different sets of cells. This first equivalence
break occurs when the Euclidean distance to a cell in Rk+1 is less than the El Alto distance to a cell in Rk.
Hence, we want to find the smallest integer k such that

dE(i, j ∈ Rk+1) < dH(i, j ∈ Rk) ⇐⇒ dE(i, j ∈ Rk+1) < k. (S75)

To determine the expression for dE(i, j ∈ Rk+1), we first notice that such cells will be positioned towards the
middle vertical section of the hexagonal lattice depicted in Figure S4a. To find the first k for which equivalence
breaks, two minimal paths are possible, depending on the parity of k. The triangles in Figure S4b depict both
the shortest Euclidean distance and a corresponding possible El Alto path for each Rk. Hence, we have two
possibilities for the Euclidean distance, given by

dE(i, j ∈ Rk) =
{

k
√

3
2 k even,√
3k2+1

2 k odd.
(S76)

Then, it follows that

dE(i, j ∈ Rk+1) < k ⇐⇒


√

3(k+1)2+1
2 < k k even,

(k+1)
√

3
2 < k k odd.

(S77)

⇐⇒

{
k > 3+

√
13 ≃ 6.6056 k even,

k >
√

3
2−

√
3 ≃ 6.4641 k odd.

(S78)

Hence, the equivalence between definitions fails for k ≥ 7, meaning the Rk Euclidean definition for R7 would
already include cells in R8. This observation shows that these two definitions would yield slightly different
analysis for signalling at distant rings. We argue, however, that realistic protrusions do not usually reach R7,
and therefore the equivalent definitions work for most applications. However, the main text also discusses the
analysis of such systems for theoretically longer protrusions under the El Alto distance definition.
Alternative definitions of Rk are possible with fixed Euclidean distance thresholds and can lead to different
levels of complexity (Figures S4c-S4f). Interesting patterns emerge when considering signalling rings purely
defined by their Euclidean radius. That is, cells belong to the same ring provided they have precisely the same
Euclidean distance to the focal cell i (Figure S4d). By alternating the colouring of successive signalling rings,
based on this definition and ordered from the distance to R0, somewhat chaotic patterns emerge from such
simple labelling (Figure S4f). In other words, we colour cells black or white dependent on their distance from
the focal cell, alternating colour whenever a new set of cell centres intersects a circumference with an increasing
radius, centered at R0. If the number of greyscale colouring steps is increased (starting with the binary black

1Attribution information: Google Maps, Imagery ©2022 CNES / Airbus, Maxar Technologies, Map data ©2022.
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R0

R1

R2

R3

R4

R5

R6

R7

R8

(a) (b)

(c) (d)

(e) (f)

Figure S4. (Caption overleaf.)
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Figure S4. (Overleaf.) Euclidean and El Alto distances on hexagonal lattices.
(a) The fixed Euclidean distance (radius of the blue arcs) defined at R7 is greater or equal to the distance of three cell centres (in
red) in R8, breaking the definition equivalence. (b) Two minimal paths are possible, depending on the parity of k. (c-d) Signalling
rings based on two different distance-based definitions. Cells are in the same ring (same colour) if (c) k − 1 < dE(i, j) ≤ k, or
(d) they have exactly the same Euclidean distance to cell i. k ≤ 10. (e-f) Intricate patterns emerge by alternating colouring of
successive signalling rings based on the respective two definitions. k ≤ 40.

or white), further fractal-like patterns arise (Video S4). The only coinciding rings under all definitions are R0
and R1. Since realistic cells are not regular hexagons, and protrusions are also subject to stochastic effects
(such as different lengths and lifespans), we argue that the hexagonally isotropic signalling rings Rk provide a
more realistic approximation of the signalling reach of protrusions when compared to the alternative discrete
distance-based definition we presented.

Robustness and pattern selection
As discussed in the main text, Fourier analysis helps in describing pattern selection under LSA. We recall that the
solution to the linearised problem is given by(

ñj,k(t)
d̃j,k(t)

)
=

N∑
q=1

M∑
p=1

[
C+

q̄,p̄e
λ+

q̄,p̄tv+
q̄,p̄ +C−

q̄,p̄e
λ−

q̄,p̄tv−
q̄,p̄

]
e2πi(q̄j+p̄k), (S79)

where v±
q̄,p̄ and λ±

q̄,p̄ are the eigenvectors and eigenvalues associated to (q̄, p̄), respectively. C+
q̄,p̄ and C−

q̄,p̄ are
constants depending on the initial conditions of the problem. Figure S6 shows the comparison between the final
patterns from Figure 8 with a sensory organ precursor (SOP) cell filtering based on a specific threshold (percentage
of steady state solution) and a numerical simulation. Figure S7 shows the dependence of cell fates on the choice of
C+

q̄,p̄, as predicted by LSA.
Figure S6 compares the final patterns from Figure 8 with an SOP cell filtering based on a specific threshold (percent-
age of steady state solution) and a numerical simulation. In other words, the plots in each middle panel correspond
to the selection of cells whose Delta level is above a specific threshold (dT ). It is noticeable that LSA predicts sparse
patterning for a wide range of values of ϵ around bifurcations. It is only for ϵ ≥ 0.4 that sparser patterns emerge, yet
more than two cell types are observable prior to filtering. Figure S7 shows the dependence of cell fates on the choice
of C+

q̄,p̄. Similar to the conclusions for lateral inhibition in Collier et al. (1996), different choices of constants lead to
fundamentally different SOP cell patterns and cell types. Considering imaginary constants, for example, leads to
intermediary cell types in the case of 0 ≤ ϵ < 0.4 (Figure S7a). This can also be seen for different values of h and
k (O’Dea and King, 2011). Note that the bifurcation of Ωq̄,p̄ at ϵ = 0.4 (Figure 2b) can be mathematically shown by
solving Ω 1

3 , 1
3
(ϵ) = Ωq̄,p̄(ϵ) for ϵ and a minimising pair (q̄, p̄) ̸∈ {(1/3,1/3),(2/3,2/3)}. Given the minimisers in Figure

8b, we have that, with (q̄, p̄) = (1/4,1/4) for example, Ω 1
3 , 1

3
(ϵ) = Ω 1

4 , 1
4
(ϵ) ⇔ ϵ = 0.4. As detailed in the main text,

patterning timing was also studied in the deterministic scenario. Figure S5 shows some of the averaging results for
parameter values near the bifurcations in Figure 3.
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Figure S5. Patterning time with long-range signalling.
Average patterning time for different values of ϵ on 14 × 14 lattices, for each critical point. Here, d = 0.001, and simulations were
run over 30 different tissues per ϵ. The values of (rt, b) are given on the plot.
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(a) ϵ = 0, dT = 0 (b) ϵ = 0.2, dT = 0

(c) ϵ = 0.4, dT = 0.64 (d) ϵ = 0.6, dT = 0.73

(e) ϵ = 0.8, dT = 0.82 (f) ϵ = 1, dT = 0.44

Figure S6. Pattern selection: threshold solutions and numerical comparisons.
Here are shown the final patterns predicted by LSA (left), threshold-based SOP cell detection with di > dT (middle) and a
numerical simulation close to a bifurcation (right), for different values of ϵ and dT . C+

q̄,p̄ = 1 ∀(q̄, p̄), h = k = 6, a = 10−5,

b = 101.3 and ν = 1.

(a) 0 ≤ ϵ < 0.4

(b) ϵ = 0.4

(c) ϵ = 1

Figure S7. Pattern selection: dependence on initial conditions.
(a) ϵ = 0. C+

1
3 , 1

3
= 1, C+

2
3 , 2

3
= 0.7i. (b) ϵ = 0.4, C+

1
3 , 1

3
= C+

2
3 , 2

3
= 0, C+

q̄,p̄ = 1, ∀q̄, p̄ ̸∈ {{ 1
3 , 1

3 }{ 2
3 , 2

3 }}. (c) ϵ = 1, C+
q̄,p̄ = −1, ∀q̄, p̄.
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Supplementary Note 2: Weakly nonlinear stability analysis
Motivated by theory from reaction-diffusion systems (Turing, 1952; Wollkind et al., 1994), we perform weakly nonlin-
ear stability analysis (WNSA) to better understand the effects of nonlinear terms, based on the amplitude dynamics
of the Fourier components corresponding to the fastest growing modes, expanding on LSA to deduce further pat-
terning features derived from long-range signalling. The following discussion is presented in gradually increasing
levels of complexity of differential systems.

One-dimensional systems
When performing LSA, we have looked for solutions to the following system

du

dt
= F (u) (S80)

of the type

u(t) = u∗ + ũ, (S81)

where u∗ is the homogeneous solution and ũ is a small perturbation which is solution to the linearised problem
dũ
dt = F ′(u∗)ũ.
Motivated by the theory in reaction-diffusion systems, where the governing equations are nonlinear partial differential
equations (PDEs), an approximation to the solution is obtained by introducing the finite amplitude function A(t,x),
where x is the spatial variable (Wollkind and Segel, 1970; Wollkind et al., 1984; Wollkind and Vislocky, 1990). For
the space-independent system, we take solutions of the type

u(t) =
∞∑

m=0
vmAm(t). (S82)

A satisfies the following Landau equation (Aranson and Kramer, 2002)

dA

dt
(t) =

∞∑
m=0

bmAm(t), (S83)

where {vm} are constants and {bm} are coefficients depending on the problem itself. {bm} are also known as
Landau constants. This formulation, often named the Stuart-Watson nonlinear extension (Stuart, 1960; Watson,
1960), allows us to modify the linear expansion approach inherent to Eq. (S81) so that it will be applicable to higher-
order terms. Approximate solutions are obtained by a severe truncation of the infinite series. Here, we take

u(t) =
K∑

m=0
vmAm(t)+O(AK+1) (S84)

and

dA

dt
(t) =

K∑
m=0

bmAm(t)+O(AK+1). (S85)

In this case, substituting into Eq. (S80) leads to

du

dt
=

K∑
m=0

vm
d

dt
[Am(t)] (S86)

=
K∑

m=0
mvmAm−1(t)dA

dt
(t) (S87)

=
K∑

m=0

K∑
j=0

mvmbjAm+j−1(t). (S88)

Solving Eq. (S84)-Eq. (S85) with fixed K for coefficients {vm} and {bm} leads to a sequence of m vector systems,
each corresponding to a nonzero term of the form vmAm(t) appearing explicitly in Eq. (S84). In general, we start by
solving Eq. (S85) and then deduce {vm} and {bm} by differentiating Eq. (S84) and Taylor-expanding FA(A) ≡ F (u)

Berkemeier & Page | Coupling dynamics of 2D Notch-Delta signalling Supplementary Information | 12



around A = 0. Previous works have solved this with K = 3 for reaction-diffusion equations in different applications
(Stephenson and Wollkind, 1995; Bozzini et al., 2015; Liu et al., 2018). We then need to solve the following system

du

dt
= FA(A) (S89)

for the tuples (b0, b1, b2, b3) and (v0,v1,v2,v3), where

u(t) = v0 +v1A(t)+v2A2(t)+v3A3(t)+O(A4) (S90)
dA

dt
(t) = b0 + b1A(t)+ b2A2(t)+ b3A3(t)+O(A4). (S91)

We take v0 ≡ u∗. Then, substituting Eq. (S90)-Eq. (S91) into du
dt yields

du

dt
= b0v1 +(b1v1 +2b0v2)A(t)+(b2v1 +2b1v2 +3b0v3)A2(t)

+(b3v1 +2b2v2 +3b1v3)A3(t)+O(A4). (S92)

Taylor-expanding FA(A) around A = 0 leads to

FA(A) ≡ F (u∗ +v1A(t)+v2A2(t)+v3A3(t)) (S93)

≃ F (u∗)+v1F ′ (u∗)A(t)+
(

1
2v2

1F ′′ (u∗)+v2F ′ (u∗)
)

A2(t)

+
(

1
6v3

1F (3) (u∗)+v2v1F ′′ (u∗)+v3F ′ (u∗)
)

A3(t)+O(A4). (S94)

Finally, equating the coefficients of Am(t) (0 ≤ m ≤ 3) defines the system of 4 equations and 7 variables (excluding
the trivial case v0 = u∗)

m = 0 : b0v1 = F (u∗) = 0 (S95)

m = 1 : b1v1 +2b0v2 = v1F ′ (u∗) (S96)

m = 2 : b2v1 +2b1v2 +3b0v3 = 1
2v2

1F ′′ (u∗)+v2F ′ (u∗) (S97)

m = 3 : b3v1 +2b2v2 +3b1v3 = 1
6v3

1F (3) (u∗)+v2v1F ′′ (u∗)+v3F ′ (u∗) (S98)

from which, with v1 ̸= 0, we deduce

b0 = 0 (S99)

b1 = F ′(u∗) (S100)

b2 = v2
1F ′′(u∗)−2v2F ′(u∗)

2v1
(S101)

b3 = v4
1F (3)(u∗)−12v1v3F ′(u∗)+12v2

2F ′(u∗)
6v2

1
. (S102)

This method provides a straightforward tool to explicitly determine weakly nonlinear approximations of the form
Eq. (S90) for autonomous systems in one dimension.
Amplitude-based solutions of the form Eq. (S90) are assumed to capture the effects of harmonics of the fastest
growing modes, appearing as space-independent components. In many cases, solutions have been restricted to
amplitude equations of the form

dA

dt
(t) = λ∗A(t)−κA3(t)+O(A5), (S103)

where λ∗ is the fastest growth rate of weakly nonlinear perturbations. The sign of the Landau constant κ in this
differential equation is relevant: if it is positive, then the effect of the term −κA3(t) is to arrest the exponential growth
of A(t) at the value

√
λ∗/κ (Turing, 1952). Given (b0, b1, b2, b3) = (0,λ∗,0,−κ), we have that F ′(u∗) = λ∗ and

(v0,v1,v2,v3) =

u∗,v1,
v2

1F ′′(u∗)
2λ∗ ,

v1
(

6κλ∗ +λ∗v2
1F (3)(u∗)+3v2

1F ′′(u∗)2
)

12λ∗2

 (S104)
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by Eq. (S99)-Eq. (S102) and where v1 is arbitrary. Without loss of generality, we take v1 = 1. Hence, we are
interested in solutions of the form

u(t) = u∗ +A(t)+ F ′′(u∗)
2λ∗ A2(t)+

(
6κλ∗ +λ∗F (3)(u∗)+3F ′′(u∗)2

)
12λ∗2 A3(t). (S105)

A(t) is a solution of Eq. (S91), given by

A(t) =
√

λ∗eλ(t−C1)√
κe2λ∗(t−C1) −1

, (S106)

where C1 is an integration constant and κ > e−2λ∗(t−C1). We shall return to this solution, after discussing the
multidimensional analysis next.

Multidimensional systems
The generalisation of WNSA to multidimensional systems requires further machinery from calculus. Before we
delve into the Notch-motivated two-dimensional system, we present the general Taylor expansion of vector-valued
multivariable functions.
Consider a function F :Rn →Rm given by F(u) = (F1(u), ...,Fm(u)), where u = (u0, ...,un). The general Kth-order
Taylor expansion of F(u +u0) about a point u0 ∈ Rn is given by

F(u +u0) ≃
K∑

j=0

1
j! (D

jF)u0 [(u)j ], (S107)

where the Frechet-derivative terms (DjF)u0 [(u)j ] may be written in vector form as

(DjF)u0 [(u)j ] =


∑n

i1,...,ij=1
∂jF1

∂ui1 ···∂uij
(u0)(ui1 · · ·uij )

...∑n
i1,...,ij=1

∂jFm
∂ui1 ···∂uij

(u0)(ui1 · · ·uij )

 (S108)

using the notation

n∑
i1,...,ij=1

=
n∑

i1=1
· · ·

n∑
ij=1

. (S109)

For a two-variable two-dimensional (n = m = 2) vector function F(u) = (F1(u),F2(u)), where u = (u1,u2), the
third-order Taylor expansion of such function around u0 = u∗ = (u∗

1,u∗
2) is given by

F(u) ≃ (D0F)u∗ [(u −u∗)0]+ (D1F)u∗ [(u −u∗)1]

+ 1
2(D2F)u∗ [(u −u∗)2]+ 1

6(D3F)u∗ [(u −u∗)3], (S110)

which may be simplified as follows

(D0F)u∗ [(u −u∗)0] = F(u∗) (S111)

(D1F)u∗ [(u −u∗)1] =

∑2
i1=1

∂F1
∂ui1

(u∗)
[
(ui1 −u∗

i1
)
]

∑2
i1=1

∂F2
∂ui1

(u∗)
[
(ui1 −u∗

i1
)
]= J(u∗)(u −u∗) (S112)

(D2F)u∗ [(u −u∗)2] =

∑2
i1=1

∑2
i2=1

∂2F1
∂ui1 ∂ui2

(u∗)
[
(ui1 −u∗

i1
)(ui2 −u∗

i2
)
]

∑2
i1=1

∑2
i2=1

∂2F2
∂ui1 ∂ui2

(u∗)
[
(ui1 −u∗

i1
)(ui2 −u∗

i2
)
] (S113)

=
(

(u −u∗)T H1(u∗)(u −u∗)
(u −u∗)T H2(u∗)(u −u∗)

)
(S114)

(D3F)u∗ [(u −u∗)3]

=

∑2
i1=1

∑2
i2=1

∑2
i3=1

∂3F1
∂ui1 ∂ui2 ∂ui3

(u∗)
[
(ui1 −u∗

i1
)(ui2 −u∗

i2
)(ui3 −u∗

i3
)
]

∑2
i1=1

∑2
i2=1

∑2
i3=1

∂3F2
∂ui1 ∂ui2 ∂ui3

(u∗)
[
(ui1 −u∗

i1
)(ui2 −u∗

i2
)(ui3 −u∗

i3
)
] . (S115)

Berkemeier & Page | Coupling dynamics of 2D Notch-Delta signalling Supplementary Information | 14



J is the Jacobian matrix of F, and H1 and H2 are the Hessian matrices of functions F1 and F2, respectively. The
third derivative term given by (D3F)u∗ [(u −u∗)3] has no straightforward simplification. Hence

F(u) ≃ F(u∗)+J(u∗)(u −u∗)

+ 1
2

(
(u −u∗)T H1(u∗)(u −u∗)
(u −u∗)T H2(u∗)(u −u∗)

)
+ 1

6(D3F)u∗ [(u −u∗)3]. (S116)

In the following, we drop the differential evaluation at the homogeneous state u∗ when convenient. Again, we fix
K = 3 and consider solutions to

du
dt

= F(u) (S117)

of the form

u(t) = v0 +v1A(t)+v2A2(t)+v3A3(t)+O(A4) (S118)

=
(

v01
v02

)
+
(

v11
v12

)
A(t)+

(
v21
v22

)
A2(t)+

(
v31
v32

)
A3(t)+O(A4), (S119)

where A(t) satisfies Eq. (S91) and vm (0 ≤ m ≤ 3) are now constant vectors. Using the general Taylor expansion
Eq. (S116), we now aim to find the tuples (b0, b1, b2, b3), (v01,v11,v21,v31) and (v02,v12,v22,v32) such that the
weakly nonlinear approximation holds in the two-dimensional system.
Substituting Eq. (S119) into du

dt we get, for j ∈ {1,2},

duj

dt
= b0v1,j +(b1v1,j +2b0v2,j)A(t)+(b2v1,j +2b1v2,j +3b0v3,j)A2(t)

+(b3v1,j +2b2v2,j +3b1v3,j)A3(t)+O(A4). (S120)

Given Eq. (S116), we have that the Taylor expansion of FA(A) ≡ F(u) around A = 0 satisfies

FAj(A) = Fj(v1A(t)+v2A2(t)+v3A3(t)) (S121)

≃ T0,j(v)+T1,j(v)A(t)+T2,j(v)A2(t)+T3,j(v)A3(t)+O(A4), (S122)

where v ≡ (v0,v1,v2,v3) and

T0,j(v) = Fj = 0 (S123)

T1,j(v) = v11
∂Fj

∂u1
+v12

∂Fj

∂u2
(S124)

T2,j(v) = v21
∂Fj

∂u1
+v22

∂Fj

∂u2
+ v2

11
2

∂2Fj

∂u2
1

+ v2
12
2

∂2Fj

∂u2
2

+v11v12
∂2Fj

∂u1∂u2
(S125)

T3,j(v) = v31
∂Fj

∂u1
+v32

∂Fj

∂u2

+v11v21
∂2Fj

∂u2
1

+v12v22
∂2Fj

∂u2
2

+(v21v12 +v11v22) ∂2Fj

∂u1∂u2

+ v3
11
6

∂3Fj

∂u3
1

+ v3
12
6

∂3Fj

∂u3
2

+ v2
11v12

2
∂3Fj

∂u2
1∂u2

+ v11v2
12

2
∂3Fj

∂u1∂u2
2

. (S126)

Equating the coefficients of Eq. (S120) and Eq. (S122) yields an intricate system of 8 equations and 10 variables
(excluding the trivial cases v01 = u∗

1 and v02 = u∗
2), leading to a series of relations between bm and vm′,j (1 ≤

m,m′ ≤ 3, j ∈ {1,2}). By defining Tm ≡ (Tm,1,Tm,2)T , for 0 ≤ m ≤ K, we have

T0(v) = 0 (S127)

T1(v) = J(u∗)v1 (S128)

T2(v) = J(u∗)v2 + 1
2

(
vT

1 H1(u∗)v1
vT

1 H2(u∗)v1

)
(S129)

T3(v) = J(u∗)v3 + 1
2

(
vT

2 H1(u∗)v1
vT

2 H2(u∗)v1

)
+ 1

6(D3F)u∗ [(v1)3] (S130)
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and so the coefficient relations are given by

b0v1 = 0 (S131)

b1v1 = J(u∗)v1 (S132)

(2b1I−J(u∗))v2 = 1
2

(
vT

1 H1(u∗)v1
vT

1 H2(u∗)v1

)
− b2v1 (S133)

(3b1I−J(u∗))v3 = 1
2

(
vT

2 H1(u∗)v1
vT

2 H2(u∗)v1

)
+ 1

6(D3F)u∗ [(v1)3]− b3v1 −2b2v2. (S134)

We now motivate a choice for v1 = (v11,v12). Notice first that this method mimics the LSA approach when K = 1,
v0 = u∗ and b0 = 0. Eq. (S132) holds provided b1 and v1 are an eigenvalue and a corresponding eigenvector of the
Jacobian matrix J of F evaluated at u∗. Assuming A(t) = eλ∗t, we take b1 = λ∗ and v1 = v∗, where λ∗ is the fastest
growth rate and v∗ its corresponding eigenvector (which is not unique), as in Eq. (49)-Eq. (50). The general solution
would, in this case, correspond to the asymptotic solution in Eq. (51). The remaining coefficient relations between
Eq. (S120) and Eq. (S122) follow from this choice of v1 via the other coefficient identities.

WNSA of Notch-Delta signalling dynamics
In the following, we take ui = (ni,di) and

dui

dt
= F(ni,di) =

(
F1(ni,di)
F2(ni,di)

)
=
(

f(⟨di⟩)−ni

ν(g(ni)−di)

)
(S135)

for each cell i. We may interchange cell indexation between i and (j,k) as convenient, as well as the conditions
r ̸= i, r ̸= (j,k) and ∆jk ∈ S (see previous sections for details on such notation). As previously seen, we aim to
extend the linear approach to consider solutions of Eq. (S135) in the harmonic form

ui(t) = u∗ +vi
1A(t)+vi

2A2(t)+vi
3A3(t)+O(A4), (S136)

where

dA

dt
(t) = λ∗A(t)−κA3(t)+O(A5). (S137)

We have seen that discrete Fourier transforms Eq. (S38)-Eq. (S41) may be used to decouple the original system of
2NM equations (NM is the number of cells on a N × M hexagonal lattice). We recall from Eq. (S37) that, when
K = 1, linearisation led to

dui

dt
≃ Jui +

∑
r ̸=i

Jrur, (S138)

which was then rewritten by introducing the following coupling function derived from the Jacobian matrix (with i ≡
(j,k) in the case of a two-dimensional lattice)

Ωq̄,p̄ ≡ Ωq̄,p̄(q,p) =
∑

∆jk∈S

J∆jke2πi(q̄∆j+p̄∆k) (S139)

leading to the decoupled linearised problem

d

dt

(
ξq,p

ηq,p

)
≃ Lq̄,p̄

(
ξq,p

ηq,p

)
, (S140)

where Lq̄,p̄ = J + Ωq̄,p̄. Given exponential-based solutions of the linearised Eq. (S140), our problem relied then on
minimising Ωq̄,p̄ in order to find the fastest growing modes (q̄, p̄). This problem changes and becomes relatively
trickier in the case of WNSA due to multiple mathematical obstacles, as discussed below.
The extension of Eq. (S139) to the weakly nonlinear solution Eq. (S136) is not trivial and, in general, we should not
expect a higher-order extension of decomposition Eq. (S138) to occur due to cross-derivative terms. To see this,
take a general function F(u) = (F1(u),F2(u)), where u = (ni,di,di−1,di+1) (corresponding, for example, to the
one-dimensional ring of cells in Example 1.2). The second-order term of the Taylor expansion for F1 around u∗

includes the cross-derivative terms

nidi−1
∂2F1

∂ni∂di−1
+nidi+1

∂2F1
∂ni∂di+1

+didi−1
∂2F1

∂di∂di−1
+didi+1

∂2F1
∂di∂di+1

. (S141)
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Such terms would naturally complicate the decoupling of the relative-index terms di−1 and di+1. However, in our
case, with F given by Eq. (S135), the derivatives in Eq. (S141) are all zero (and consequently any higher-order
cross-derivatives). Thus we may hope for a smoother decoupling. Hence, according to Eq. (S107) and generalising
Eq. (S138), we may write

dui

dt
≃

K∑
j=0

1
j! (D

jF)u∗ [(ui)j ]+
∑
r ̸=i

 K∑
j=0

1
j! (D

jF)u∗ [(ur)j ]

 . (S142)

All that remains now is to find a simplification of the right-hand side term of Eq. (S142) so that the decoupling is
complete and we may write the entire expression as a function of (ni,di). In other words, we aim to determine the
coefficient contribution of the coupling term to Eq. (S131)-Eq. (S134).
To simplify notation and considering the candidate solution Eq. (S136), we begin by Taylor-expanding FA(A) ≡ F(u)
around A = 0, rewriting Eq. (S142) as follows

FA(A) ≃
3∑

m=0
Ti

m(v)Am(t)+
∑
r ̸=i

3∑
m=0

Tr
m(v)Am(t). (S143)

With i ≡ (j,k), we apply the following change of variables (Fourier transform)

ζq,p = 1
NM

M∑
k=1

N∑
j=1

uj,ke−2πi(q̄j+p̄k) (S144)

= 1
NM

M∑
k=1

N∑
j=1

[
u∗ +vj,k

1 A(t)+vj,k
2 A2(t)+vj,k

3 A3(t)
]

e−2πi(q̄j+p̄k) (S145)

=
3∑

m=0
ζm

q,p, (S146)

where

ζm
q,p ≡ 1

NM

M∑
k=1

N∑
j=1

vj,k
m Am(t)e−2πi(q̄j+p̄k). (S147)

From the methods discussed before, it follows that

dζq,p

dt
= 1

NM

M∑
k=1

N∑
j=1

duj,k

dt
e−2πi(q̄j+p̄k) (S148)

= 1
NM

M∑
k=1

N∑
j=1

 3∑
m=0

Tj,k
m (v)Am(t)+

∑
r ̸=(j,k)

3∑
m=0

Tr
m(v)Am(t)

e−2πi(q̄j+p̄k). (S149)

We now aim to decouple the terms

Ω3,m
q̄,p̄ (v) ≡ 1

NM

M∑
k=1

N∑
j=1

 ∑
r ̸=(j,k)

Tr
m(v)Am(t)

e−2πi(q̄j+p̄k) (S150)

for each 0 ≤ m ≤ 3:

• m = 0. Ω3,0
q̄,p̄(v) = 0.

• m = 1. This case mimics the deduction of Eq. (S42), as follows

Ω3,1
q̄,p̄(v) = 1

NM

M∑
k=1

N∑
j=1

 ∑
r ̸=(j,k)

Tr
1(v)A(t)

e−2πi(q̄j+p̄k) (S151)

= A(t)
NM

M∑
k=1

N∑
j=1

 ∑
r ̸=(j,k)

Jrvr
1

e−2πi(q̄j+p̄k) (S152)
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= A(t)
NM

∑
∆jk∈S

J∆jk

 M∑
k=1

N∑
j=1

v(j,k)+∆jk
1 e−2πi(q̄j+p̄k)

 (S153)

=
∑

∆jk∈S

J∆jkζ1
q,pe2πi(q̄∆j+p̄∆k) (S154)

= ζ1
q,pΩq̄,p̄, (S155)

where Ωq̄,p̄ is given by Eq. (S139).

• m = 2. We have

Ω3,2
q̄,p̄(v) = 1

NM

M∑
k=1

N∑
j=1

 ∑
r ̸=(j,k)

Tr
2(v)A2(t)

e−2πi(q̄j+p̄k) (S156)

= A2(t)
NM

M∑
k=1

N∑
j=1

 ∑
r ̸=(j,k)

[
Jrvr

2 + 1
2

(
vr

1
T Hr

1vr
1

vr
1

T Hr
2vr

1

)]e−2πi(q̄j+p̄k). (S157)

While the term involving Jr can be simplified like the m = 1 case, the other term yields a higher level of
complexity (Remark 2.1). To see this, we exclude both A2(t) and the index sum, and track the first component
of such term, as follows

1
2NM

M∑
k=1

N∑
j=1

[
vr

11
2 ∂2F1

∂vr
11

2 +vr
12

2 ∂2F1

∂vr
12

2 +2vr
11vr

12
∂2F1

∂vr
11∂vr

12

]
e−2πi(q̄j+p̄k). (S158)

Given the type of variable change Eq. (S144), we do not expect, in general, to be able to manipulate Eq. (S158)
so that it is written in terms of ζ2

q,p in order to second-order decouple the original system. The same can be
argued for the case m = 3.

• m = 3. See m = 2 and discussion below.

Given the complexity generated by the cases m = 2 and m = 3 any methodology as systematic as the linear case
seems to be out of reach. Therefore, WNSA is insufficient to describe quantitative dynamics of long-range signalling,
without further assumptions.
We have presented the main methodology behind a potential framework for weakly nonlinear analysis of translation-
ally invariant Notch-Delta systems. Considering different changes of variables or taking cell-dependent amplitude
functions Aq,p(t) could help in simplifying decoupling. In the main text, we discuss an additional multiscale
alternative to our LSA and WNSA approaches for studying Notch-Delta systems, as well as some suggestions for
how these methodologies might be improved.

Remark 2.1 (High-order decoupling) Part of the problem in decoupling the second-order term in Eq. (S156)
relies on understanding how a term in the form

N∑
j=1

a2
je

2πi
N j (S159)

relates to the quadratic form  N∑
j=1

aje
2πi
N j

2

, (S160)

where aj = vr
11, for example. While a linear manipulation does not seem promising in this case (compared to

the m = 1 case), alternative approaches might hint at further simplification.
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Supplementary Note 3: Simulation parameters
Table 1 shows the model parameters used in the simulations shown in the main text. In all simulations, h = k = 6,
ν = 1, and the initial conditions ni(0) and di(0) have arbitrary values around the respective homogeneous steady
state (n∗,d∗): ni(0) ∼ N(n∗,0.01) and di(0) ∼ N(d∗,0.01).

Figures pℓ ϵ log10 rt log10 b (n∗,d∗)
1c-1f 2.1 {0,0.2,0.6,1} 8 2 (0.744,0.055)
2g-2i 2.1 {0.2,0.4,0.6} 8 2 (0.744,0.055)

3 2.1 {0,0.2,0.4,0.8,1} 8 2 (0.744,0.055)
4 2.1 {0.09,0.78} 8 2 (0.744,0.055)

5a-5c 4 {0.2,0.4,0.6} 8 2 (0.744,0.055)
6a-6c {2,3,4} 0.6 8 2 (0.744,0.055)
7b-7e 2.1 0.6 8 2 (0.744,0.055)

8 - {0,0.2,0.4,0.6,0.8,1} - - -
9 - {0,0.2,0.4,0.6,0.8,1} - - -

10 (row 1) 2.1 {0,0.2,0.4,0.6,0.8,1} 1 2 (0.420,0.646)
10 (row 2) 2.1 {0,0.2,0.4,0.6,0.8,1} 2 1 (0.671,0.523)
10 (row 3) 2.1 {0,0.2,0.4,0.6,0.8,1} 5 1.3 (0.781,0.181)

Table 1. Simulation parameters.
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