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Abstract We consider parabolic partial differential equations and develop
methods that provide a priori estimates for solutions with singular initial
data. These estimates are obtained by understanding the time decay of norms
of solutions. First, we derive regularity results for the Fokker-Planck equa-
tion by estimating the decay of Lebesgue norms. These estimates depend on
integral bounds for the advection and diffusion. Then, we apply similar meth-
ods to the heat equation. Finally, we conclude by extending our techniques
to the porous media equation. The sharpness of our results is confirmed by
examining known solutions of these equations. Our main contribution is the
use of functional inequalities to establish the decay of norms through nonlin-
ear differential inequalities. These are then combined with ODE methods to
deduce estimates for the norms of solutions and their derivatives.

1 Introduction

Parabolic partial differential equations are often used to describe the diffusion
of mass, momentum or heat through a material. A classical parabolic PDE
is the heat equation:

ut(x, t) = ∆u(x, t), (1)

where u : Rd × [0, T ] → R. It is well known that the solution to (1) with
singular initial data u(x, 0) = δx0

is the fundamental solution

Φ(x, t) =
1

(4πt)d/2
e−
|x|2
4t .
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Although when t→ 0, Φ becomes singular, for t > 0, Φ is smooth in x and in
any Lp space. More precisely, the L1-norm of this solution is conserved and
the Lp-norms decay in time as follows

‖Φ‖Lp(Rd) = Cpt
− 1

2pd(p−1)

for some constant Cp > 0. The preceding identity can be checked by direct
computation. Here, we seek to prove similar bounds for solutions of parabolic
equations without relying on explicit formulas for the solutions.

We begin by investigating the Fokker-Planck equation

ut(x, t) = div(b(x, t)u(x, t)) + div(a(x, t)∇u(x, t)),

where a is a positive scalar diffusion coefficient and b is a smooth advection
vector field. This second-order equation, also known as the Kolmogorov for-
ward equation, models the behavior of a particle under the effect of drag
(corresponding to the advection term, b) and random forces (corresponding
to the diffusion coefficient, a) and has applications in physics, polymer fluids,
plasma, surface physics, and finance, to name just a few. Here, for initial data
u0 and a domain Ω, we obtain estimates of the form

‖Dku‖Lp(Ω) ≤ C‖u0‖
f(p,d,k)
L1(Ω) t−g(p,d,k),

where k ∈ N0, f, g ≥ 0 are functions of the dimension d, k and p, and C is a
non-negative constant depending on the space and the problem parameters.
Moreover, these estimates depend only on the L1-norm of the initial data
and not on the particular solution.

Our main results on the Fokker-Planck equation are as follows. First, under
assumptions on the divergence of the advection, we obtain the theorem:

Theorem 1. Let u solve (9) with u ∈ C∞(Rd× [0,∞)). Let a > 0. Moreover,

assume a ∈ L
1

1−q (Rd) for some 1 < q < 2. Then, for d ≥ 2, the following
holds:

1. If d = 2 and 1 < q < 2, or q < (d + 2)/d and d ≥ 3, div b = 0, and
p > 1, then, for all t > 0,

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)t
− d(p−1)
p(2−d(q−1)) . (2)

2. If div b ∈ Lr(Rd) and p, q are such that

2 ≤ d < 2r and 1 < q <
2r + dr − d

dr
, (3)

then, there exists T > 0 such that

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)t
− d(p−1)
p(2−d(q−1)) (4)
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for all t < T . For t > T , ‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)T
− d(p−1)
p(2−d(q−1)) .

Remark 1. The exponent on the right-hand side of (2) is negative if d = 2
and 1 < q < 2, or q < (d+ 2)/d and d ≥ 3.

Under integrability assumptions on the advection, we have the following re-
sult.

Theorem 2. Let u solve (9) with u ∈ C∞(Rd × [0,∞)). Moreover, assume

that a−1 ∈ Lr(Rd) and |b| ∈ L
2rq
r−1 (Rd) for some q > 1, r > 2. Then, for any

p > 1 and d ≥ 2, the following holds:

1. Let q be such that

q >
d(1− r)
d− 2r

for 2 < d < 2r. (5)

If a is bounded by above and below, there exists T > 0 such that

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)t
− qr(p−1)
p(r+q−1) (6)

for all t < T . For t > T , ‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)T
− qr(p−1)
p(r+q−1) .

2. Let q be such that

q >
d(1− r)

dr(s− 1) + d− 2r
for

2

s
< d <

2r

1 + r(s− 1)
. (7)

Moreover, if a ∈ L
1

1−s (Rd), there also exists T > 0 such that

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)t
− qr(p−1)
p(r+q−1) (8)

for 1 < s < 2 and t < T . For t > T , ‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)T
− qr(p−1)
p(r+q−1) .

The proofs of the prior theorems are presented in Section 2. There, we also
discuss an application to L∞ bounds for the solutions of (9) with singular
initial data. Then, in Section 3, we study a particular case, the heat equation.
There, we compare our methods with the entropy method [8] and hypercon-
tractivity [1, 5, 7, 11, 12].

Finally, in Section 4, we extend our results to the porous media equation

ut(x, t) = ∆(u(x, t)m),

where m ≥ 1. This equation models diffusion processes and fluid flow through
porous media (sponge or wood, for example) and has applications in mathe-
matical biology, lubrication, and boundary-layer theory.

Our main contribution is the use of functional inequalities and a differen-
tial argument to derive a method to prove estimates for norms of solutions
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of linear and nonlinear parabolic equations. This method systematizes tech-
niques to infer estimates for solutions of parabolic PDE.

Similar techniques were studied in [2, 14, 15] and used to establish smooth-
ing effects and the time decay of solutions of the heat equation and of the
porous media equation. A method comparable to ours was studied in [9, 10].
There, the regularizing effect and the long- and short-time decay were studied
for the parabolic Cauchy-Dirichlet problem and the viscous Hamilton-Jacobi
equation with a superlinear Hamiltonian.

There are three key techniques used to prove our results. First, we expand
the time derivative of the Lp-norms and use integration by parts to estab-
lish the decay of these norms. Then, we combine Gagliardo-Nirenberg and
Sobolev inequalities with the conservation of L1-norms to obtain a nonlinear
dissipation estimate. Finally, we apply a nonlinear Grönwall-type estimate to
get decay in time.

2 Fokker-Planck Equations

Consider the Fokker-Planck equation with initial data in L1:{
ut(x, t) = div(b(x)u(x, t)) + div(a(x)∇u(x, t)) in Rd × (0,∞)

u(x, 0) = u0(x) in Rd,
(9)

where a is a positive scalar diffusion coefficient and b is a smooth advection
vector field. In this section, we derive integrability conditions on a and b
that imply decay estimates for Lebesgue norms. To simplify the discussion,
we assume that a and b are time independent. We are interested in two
scenarios. In the first, we assume integrability on the divergence of b. In the
second, we assume integrability on b. When b = 0 and a = 1, (9) becomes the
heat equation for which we deduce further regularity in the following section.

2.1 Integrability conditions on the divergence of the
advection

Here, we prove Theorem 1 and obtain the two estimates for the solutions of
(9) depending on the properties of div b.

Proof (Proof of Theorem 1). 1. We have that

d

dt

∫
Rd
up dx = p

∫
Rd
up−1 div(bu) dx+ p

∫
Rd
up−1 div(a∇u) dx. (10)

The reverse Hölder inequality, for functions f and g, states that
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‖fg‖L1(Rd) ≥ ‖f‖
L

1
q (Rd)

‖g‖
L

1
1−q (Rd)

,

whenever q > 1. Then, since a ∈ L
1

1−q (Rd), we have∫
Rd
up−1 div(a∇u) dx = −C

∫
Rd
aup−2|∇u|2 dx ≤ −C

(∫
Rd

(up−2|∇u|2)
1
q dx

)q
.

Fix γ = p/2. Then, by the Gagliardo-Nirenberg-Sobolev inequality for q < 2,
it follows that(∫

Rd
(up−2|∇u|2)

1
q dx

)q
=

(∫
Rd
|∇(uγ)|

2
q dx

)q
≥ C

(∫
Rd
uγq

∗
dx

) 2
q∗

,(11)

where q∗ is the Sobolev conjugate exponent to 2
q , given by q∗ = 2d

dq−2 . Using

the interpolation inequality, L1-norm conservation, and 0 < λ < 1 with

1

p
= 1− λ+

λ

γq∗
,

we have that(∫
Rd
uγq

∗
dx

) λ
q∗

= ‖u‖γλ
Lγq∗ (Rd) = ‖u‖γλ

Lγq∗ (Rd) ≥ ‖u‖
γ
Lp(Rd)‖u0‖

γ(λ−1)
L1(Rd) ,

where λ = d(p−1)
2+d(p−q) . Combining the previous estimates, we get

∫
Rd
up−1 div(a∇u) dx ≤ −C

(∫
Rd
up dx

)β
‖u0‖

2γ(λ−1)
λ

L1(Rd) ,

where β = 1
λ = 2+d(p−q)

d(p−1) . For the other term in (10), we have that∫
Rd
up−1 div(bu) dx = −

∫
Rd
up−1∇u · b dx

= −C
∫
Rd
∇(up) · b dx = C

∫
Rd
up div b dx.

Therefore, if div b = 0, with z(t) =
∫
Rd u

p dx, we get the inequality

ż ≤ −C‖u0‖
2γ(λ−1)

λ

L1(Rd) z
β .

Thus, by Lemma 1,

z(t) ≤ C‖u0‖
2γ(λ−1)
λ(1−β)
L1(Rd) t

1
1−β = C‖u0‖pL1(Rd)t

− d(p−1)
2−d(q−1) ,
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which yields the estimate in (2).
2. Now, we assume that div b ∈ Lr(Rd). Hence, Hölder’s inequality leads

to ∫
Rd
up div b dx ≤

(∫
Rd
upr

′
dx

) 1
r′
(∫

Rd
(div b)r dx

) 1
r

,

where 1/r′ + 1/r = 1. From (11), we have∫
Rd
up−1 div(a∇u) dx ≤ −C

(∫
Rd
uγq

∗
dx

) 2
q∗

,

where γ = p/2 and q∗ = 2d/(dq − 2). Then, we have that

d

dt

∫
Rd
up dx ≤ C

(∫
Rd
upr

′
dx

) 1
r′

− C
(∫

Rd
uγq

∗
dx

) 2
q∗

. (12)

Note that, by interpolation,(∫
Rd
upr

′
dx

) 1
r′

≤
(∫

Rd
uγq

∗
dx

) pθ
γq∗

‖u0‖p(1−θ)L1(Rd),

where θ is such that 1
pr′ = θ

γq∗ +1−θ. Note that the previous inequality only
holds if

pr′ < γq∗;

that is
pr

r − 1
<

pd

dq − 2
,

which is true if (3) holds. Therefore, with y(t) =
∫
Rd u

γq∗ dx, we have that
the right-hand side of (12) is bounded by

C1‖u0‖p(1−θ)L1(Rd)y
pθ
γq∗ − C2y

2
q∗ = C1‖u0‖p(1−θ)L1(Rd)y

2θ
q∗ − C2y

2
q∗ .

Then, since θ < 1, with z(t) =
∫
Rd u

p dx, we have that, using Lemma 2 and
interpolation again, there exists T > 0 such that, for all t < T ,

ż ≤ −Cy
2
q∗ = −C

(∫
Rd
uγq

∗
dx

) 2
q∗

≤ −C
(∫

Rd
up dx

) 1
λ

‖u0‖
2γ(λ−1)

λ

L1(Rd)

= −C‖u0‖
2γ(λ−1)

λ

L1(Rd) z
1
λ ,

where λ = d(p−1)
2+dp−dq . Then, we get

z(t) ≤ C‖u0‖
2γ(λ−1)
λ(1−1/λ)

L1(Rd) t
1

1−1/λ = C‖u0‖pL1(Rd)t
d(p−1)
d(q−1)−2 ,
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and thus (4) follows, for all t < T . For t > T ,

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)T
− d(p−1)
p(2−d(q−1)) .

�

2.2 Integrability conditions on the advection

We now recall Theorem 2, where we consider integrability on the advection.

Proof (Proof of Theorem 2). We have

d

dt

∫
Rd
up dx = C

∫
Rd
up−1 div(bu) dx+ C

∫
Rd
up−1 div(a∇u) dx

= −C
∫
Rd
up−1∇u · b dx− C

∫
Rd
aup−2|∇u|2 dx

= −C
∫
Rd
a

1
2u

p
2−1∇u · bu

p
2 a−

1
2 dx− C

∫
Rd
aup−2|∇u|2 dx.

Then, reorganizing the previous inequality and using Cauchy’s inequality
with ε, we have that

d

dt

∫
Rd
up dx+ C

∫
Rd
aup−2|∇u|2 dx = −C

∫
Rd
a

1
2u

p
2−1∇u · bu

p
2 a−

1
2 dx

≤
∣∣∣∣C ∫

Rd
a

1
2u

p
2−1∇u · bu

p
2 a−

1
2 dx

∣∣∣∣ (13)

≤ εC
∫
Rd
|a|up−2|∇u|2 dx+ Cε

∫
Rd
|b|2up|a|−1 dx.

Hence, for ε small, we can rewrite (13) as

d

dt

∫
Rd
up dx+ C

∫
Rd
aup−2|∇u|2 dx ≤ Cε

∫
Rd
|b|2up|a|−1 dx. (14)

Now, applying Hölder’s inequality twice to the last term in the previous
inequality, we get∫
Rd
|b|2up|a|−1 dx ≤

(∫
Rd
|b|2r

′
upr

′
) 1
r′
(∫

Rd
|a|−r

) 1
r

≤ C
(∫

Rd
upr

′q′
) 1
r′q′
(∫

Rd
|b|2r

′q

) 1
r′q

≤ C
(∫

Rd
upr

′q′
) 1
r′q′

,
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where 1
r + 1

r′ = 1 = 1
q + 1

q′ and r′q = rq
r−1 . Accordingly, defining γ = pr′q′ =

pqr
(q−1)(r−1) , we have, from (14),

d

dt

∫
Rd
up dx ≤ C1

(∫
Rd
uγ dx

) p
γ

− C2

∫
Rd
a|∇(u

p
2 )|2 dx,

where C1, C2 > 0 are constants depending on η and ε. Now, we consider the
two cases separately.

1. If a is bounded by above and below, then, by Sobolev’s inequality, we
have that ∫

Rd
a|∇(u

p
2 )|2 dx ≥ C

(∫
Rd
u

2∗p
2 dx

) 2
2∗

.

Then, using interpolation, we get

d

dt

∫
Rd
up dx ≤ C1

(∫
Rd
uγ dx

) p
γ

− C2

(∫
Rd
u

2∗p
2 dx

) 2
2∗

≤ C1

(∫
Rd
u

2∗p
2 dx

) 2θ
2∗

‖u0‖p(1−θ)L1(Rd) − C2

(∫
Rd
u

2∗p
2 dx

) 2
2∗

,

where θ is such that 1
γ = 2θ

2∗p + 1− θ. Note that the previous inequality only

holds if γ ≤ 2∗p/2. This is true for q such that (5) holds. Hence, since θ < 1,
using Lemma 2 and interpolation again, there exists T > 0 such that, for all
t < T ,

d

dt

∫
Rd
up dx ≤ −C

(∫
Rd
up dx

) 1
λ

‖u0‖
p(λ−1)
λ

L1(Rd)

for some λ > 0 such that 1
p = λ

γ + 1− λ⇔ λ = γ(p−1)
p(γ−1) , which yields

λ =
qr(p− 1)

qr(p− 1) + q + r − 1
.

Hence, setting z(t) =
∫
Rd u

p dx, we get an inequality of the type ż ≤

−C‖u0‖
p(λ−1)
λ

L1(Rd)z
1
λ . Thus,

z(t) ≤ C‖u0‖pL1(Rd)t
1

1−1/λ = C‖u0‖pL1(Rd)t
qr(1−p)
r+q−1 ,

which combined with (5), yields (6), for t < T . For t > T , ‖u‖Lp(Rd) ≤
C‖u0‖L1(Rd)T

− qr(p−1)
p(r+q−1) .

2. If a ∈ L
1

1−s (Rd), by Hölder’s reverse inequality, we have that∫
Rd
a|∇(u

p
2 )|2 dx ≥

(∫
Rd
a

1
1−s dx

)1−s(∫
Rd
|∇(u

p
2 )| 2s dx

)s



A Priori Regularity of Parabolic Partial Differential Equations 9

≥ C
(∫

Rd
|∇(u

p
2 )| 2s dx

)s
.

Then, for s < 2, the Gagliardo-Nirenberg-Sobolev inequality yields(∫
Rd
|∇(u

p
2 )| 2s dx

)s
≥ C

(∫
Rd
u
mp
2 dx

) 2
m

with m = 2d
ds−2 . Furthermore, interpolation and L1-norm conservation yield

(∫
Rd
uγ dx

) p
γ

≤
(∫

Rd
u
mp
2 dx

) 2θ
m

‖u0‖p(1−θ)L1(Rd), (15)

where θ is such that 1
γ = 2θ

mp + 1− θ. Note that (15) holds if γ < mp/2. This

is true for q such that (7) holds. Then, following the same steps as before,
since θ < 1, we have that there exists T > 0 such that, for all t < T ,

z(t) ≤ C‖u0‖pL1(Rd)t
1

1−1/λ = C‖u0‖pL1(Rd)t
qr(1−p)
r+q−1 ,

which combined with (7), yields (8), for 1 < s < 2 and t < T . For t > T ,

‖u‖Lp(Rd) ≤ C‖u0‖L1(Rd)T
− qr(p−1)
p(r+q−1) . �

2.3 The adjoint method

One application of our estimates are bounds of the form

‖v(·, 0)‖L∞(Ω) ≤ C‖f‖Lb([0,T ],Lq(Ω)) (16)

for solutions of {
vt + b · ∇v = div(a∇v) + f in Ω × (0, T ]

v(x, T ) = vT (x) in Ω,
(17)

where Ω = Rd or Ω = Td and vT ∈W 1,∞(Ω). To prove those bounds, we use
the adjoint method. Estimates such as (16) arise in the theory of mean-field
games, for example. As in [3, 4, 6], the adjoint problem to (17) is{

ut = div(ub) + div(a∇u) in Ω × (0, T ]

u(x, 0) = δx0
in Ω.

(18)

The central idea in the adjoint method is to derive a representation formula
for solutions of (17) in terms of solutions of (18). Arguing as in [6], we have
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v(·, 0) =

∫ T

0

∫
Ω

f(x, t)u(x, t) dxdt+

∫
Ω

vT (x)u(x, T ) dx.

Then, it follows that

|v(·, 0)| ≤
∫ T

0

∫
Ω

|f(x, t)u(x, t)| dxdt+

∫
Ω

|vT (x)u(x, T )| dx. (19)

Therefore, to estimate the left-hand side, it is enough to bound each of the
two terms on the right-hand side of the prior inequality. For the second term
on the right-hand side, we have that, by Hölder’s inequality,∫

Ω

|vT (x)u(x, T )| dx ≤ ‖vT ‖L∞(Ω)‖u(x, T )‖L1(Ω) = ‖vT ‖L∞(Ω) ≤ C,

since vT ∈W 1,∞(Ω). For the first term in (19), we apply Hölder’s inequality
twice to conclude that∫ T

0

∫
Ω

|fu| dxdt ≤
∫ T

0

‖f‖Lq(Ω)‖u‖Lp(Ω) dt (20)

≤ ‖f‖Lb([0,T ],Lq(Ω))‖u‖Lc([0,T ],Lp(Ω)),

where 1
b + 1

c = 1 = 1
p + 1

q . Thus, we see that by getting bounds for u, we can
convert them into bounds for v. Therefore, the estimates from Theorems 1
and 2, which still hold for the Fokker-Planck equation with singular initial
data, yield estimates for ‖v(·, 0)‖L∞(Ω). We have the following result.

Theorem 3. Let v, u solve (17) and (18), respectively, in Rd. Let 1
b + 1

c =
1 = 1

p + 1
q . Then,

1. Under the assumptions of Theorem 1, if

c >
p(2− d(q − 1))

d(p− 1)
, (21)

then ‖v(·, 0)‖L∞(Rd) ≤ C‖f‖Lb([0,T ],Lq(Rd)).
2. Under the assumptions of Theorem 2, if

c >
p(r + q − 1)

qr(p− 1)
,

then ‖v(·, 0)‖L∞(Rd) ≤ C‖f‖Lb([0,T ],Lq(Rd)).

Proof. 1. By (20), we have that

‖v(·, 0)‖L∞(Rd) ≤ ‖f‖Lb([0,T ],Lq(Rd))‖u‖Lc([0,T ],Lp(Rd)).

Then, by Theorem 1,



A Priori Regularity of Parabolic Partial Differential Equations 11

‖u‖cLc([0,T ],Lp(Rd)) =

∫ T

0

‖u‖cLp(Rd) dt ≤ C
∫ T

0

t−
cd(p−1)

p(2−d(q−1)) dt,

which is finite if and only if (21) holds. Hence, the estimate follows.
2. The proof is analogous using Theorem 2. �

3 The Heat Equation

Here, we apply the methods from the previous section to the homogeneous
heat equation, which corresponds to (9) for b = 0 and a = 1:{

ut(x, t) = ∆u(x, t) in Ω × (0,∞)

u(x, 0) = u0(x) in Ω.
(22)

We consider the cases where Ω = Rd and Ω = Td.

3.1 Main estimate

We now give an estimate for the Lp-norm of a derivative of any order of the
solution of the heat equation.

Theorem 4. Let u solve (22) with u ∈ C∞(Ω × [0,∞)). Then, there exists
T > 0 such that, for any k ∈ N0, p > 1, the following estimate holds

‖Dku‖Lp(Ω) ≤ C‖u0‖L1(Ω)t
− dp+kp−d2p (23)

for all t > 0 with Ω = Rd and for t ∈ [0, T ) with Ω = Td. For t > T , the
norm is bounded.

Proof. Fix γ = p/2. Then,

d

dt

∫
Ω

|Dku|p dx = C

∫
Ω

|Dku|p−2DkuDk∆udx = −C
∫
Ω

|∇(|Dku|γ)|2 dx.

For Ω = Rd, by Sobolev and Gagliardo-Nirenberg inequalities, we have that

C

(∫
Rd
|∇(|Dku|γ)|2 dx

)λ
2

≥ ‖Dku‖γλ
L2∗γ(Rd) ≥ ‖D

ku‖γ
Lp(Rd)‖u0‖

γ(λ−1)
L1(Rd) ,

where λ = d(p−1)+kp
2+d(p−1)+kp satisfies

1

p
= 1− λ+

k

d
+ λ(

1

2∗γ
− k

d
).
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Then, with z(t) =
∫
Rd |D

ku|p dx, we get the inequality

ż ≤ −C‖u0‖
2γ(λ−1)

λ

L1(Rd) z
1
λ .

Thus, by Lemma 1, z(t) ≤ C‖u0‖pL1(Rd)t
1

1−1/λ and (23) follows since

1

1/λ− 1
=

1

2
(d(p− 1) + kp).

For Ω = Td, the Gagliardo-Nirenberg inequality for bounded domains
yields(∫

Td
|Dku|2

∗γ dx

) 1
2∗

≤ C
(∫

Td
|Dku|2γ dx+

∫
Td
|∇(|Dku|γ)|2 dx

)α
2

.

Next, we observe that by Gagliardo-Nirenberg inequality(∫
Td
|Dku|p dx

) 1
p

≤ C
(∫

Td
|Dku|2

∗γ dx

) λ
2∗

‖u0‖L1(Td)

where
1

p
− k

d
= 1− λ+ λ

(
1

2∗γ
− k

d

)
.

The preceding identity yields

λ =
d(p− 1) + kp

2 + d(p− 1) + kp
.

Then, fixing z(t) =
∫
Td |D

ku|p dx, we get the following differential inequality

ż ≤ C1z − C2‖u0‖
γ λ−1

λ

L1(Td)z
γ
λp

Hence, by Lemma 2, there exists T > 0 such that z satisfies

z(t) ≤ C‖u0‖pL1(Td)t
1

1−1/λ = C‖u0‖pL1(Td)t
− 1

2 (d(p−1)+kp)

for t ∈ [0, T ). Thus, we get a similar estimate for Td. Also, by the same
lemma, the norm is bounded for t > T . �

Remark 2. Comparing again with the fundamental solution, we have that∫
Rd
|DkΦ|p dx ≤ Ct−

dp
2 −

kp
2

∫
Rd
e−C

p|x|2
t dx = Ct−

dp+kp−d
2 ,

which is the same estimate as (23). Hence, our estimates are as sharp as
possible.
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In the following two sections, we compare our method with two alternative
approaches: the entropy and hypercontractivity methods.

3.2 Entropy methods

Now, we follow the discussion in [8] for the Fokker-Planck equation and
present the entropy method applied to the heat equation. We define the
entropy

H(t) =

∫
Rd
φ(u) dx,

where u solves (22) and φ is a convex function. Integration by parts yields

Ḣ(t) =
d

dt

∫
Rd
φ(u) dx = −

∫
Rd
φ′′(u)|∇u|2 dx ≤ 0.

Furthermore,

Ḧ(t) = −
∫
Rd
φ(3)(u)ut|∇u|2 + 2φ′′(u)∇u · ∇(ut) dx = I1 + I2,

where

I1 = −
∫
Rd
φ(3)(u)ut|∇u|2 dx =

∫
Rd
φ(4)(u)|∇u|4 + 2φ(3)(u)∆u|∇u|2 dx

and

I2 = −2

∫
Rd
φ′′(u)∇u · ∇(ut) dx = 2

∫
Rd
φ(3)(u)∆u|∇u|2 + φ′′(u)(∆u)2 dx.

Hence,

Ḧ(t) =

∫
Rd
φ(4)(u)|∇u|4 + 4φ(3)(u)∆u|∇u|2 + 2φ′′(u)(∆u)2 dx.

We now set φ(u) = u2. Accordingly,

Ḧ(t) = 4

∫
Rd

(∆u)2 dx.

Hence, for some constant, C > 0, the Gagliardo-Nirenberg inequality yields

Ḧ(t) = 4

∫
Rd

(∆u)2 dx ≥ C
(∫

Rd
|∇u|2 dx

)α
= C(−Ḣ(t))α,
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where α satisfies 1
2 = 2

d +
(
1
2 −

1
d

)
α+ 1− α. Hence,

z(t) = −Ḣ(t)

satisfies the following differential inequality

ż ≤ −Czα.

Hence, as before, Ḣ satisfies

|Ḣ(t)| ≤ Ct
1

1−α

and thus, for some C depending on α,∫
Rd
u2 dx = H(t) ≤ Ct1+

1
1−α = Ct−

d
2 ,

which is the same estimate as the one obtained from Theorem 4 with k = 0
and p = 2. We have then shown that our technique gives similar results to
entropy methods.

3.3 On logarithmic Sobolev inequalities and
hypercontractivity

The gain of regularity in time can also be understood using the results
in [2, 7, 11] on logarithmic Sobolev inequalities and hypercontractivity. Con-
tractivity principles, which appear in quantum field theory, are often used to
describe operators as contractions between Lebesgue spaces, being of partic-
ular interest the case from Lp to Lq when p ≤ q.

Next, we state a result from [5] that yields a generalization of the loga-
rithmic Sobolev inequality presented in [7]. First, we recall that the Fenchel-
Legendre transform of a convex function ϕ is the function ϕ∗ : Rd → R given
by

ϕ∗(µ) = sup
x∈Rd
{µ · x− ϕ(x)}.

Proposition 1 (Gentil-Gross). Let ϕ be a C1 strictly convex function on
Rd such that

lim
|x|→+∞

ϕ(x)

‖x‖
= +∞.

Then, for all λ > 0 and for any smooth function g on Rd, we have the
following Euclidean logarithmic Sobolev inequality
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Rd
eg log

(
eg∫

Rd e
g dx

)
dx ≤ −d log(λe)

∫
Rd
eg dx+

∫
Rd
ϕ∗(−λ∇g)eg dx.

(24)

We begin by considering a time-dependent Lebesgue norm. More specifically,
we are interested in bounding

‖u‖Ls(t)(Rd) =

(∫
Rd
us(t) dx

) 1
s(t)

,

where 1 ≤ s(t) <∞.

Proposition 2. Let u be a solution to the d-dimensional heat equation (22).
Assume that 1 ≤ s(t) < ∞ is a nondecreasing function, with s(0) = p ≥ 1
and such that

s(t) = 1 + (p− 1)e
2t
λ2 , (25)

where λ = e−1. Then, the following estimate holds

‖u‖Ls(t)(Rd) ≤ ‖u0‖Lp(Rd) (26)

for all t ≥ 0.

Proof. Let s ≡ s(t). As before, we have that

d

dt

∫
Rd
us dx = s

∫
Rd
us−1∆udx+ ṡ

∫
Rd
us log u dx. (27)

We have that

s

∫
Rd
us−1∆udx = −s(s− 1)

∫
Rd
us−2|∇u|2 dx (28)

= −4(s− 1)

s

∫
Rd
|∇(u

s
2 )|2 dx ≤ 0.

Fix g = log(us) in (24) to get∫
Rd
us log

(
us∫

Rd u
s dx

)
dx ≤ −d log(λe)

∫
Rd
us dx+

∫
Rd
ϕ∗(−λ∇ log(us))us dx.

Taking λ = e−1, we estimate the second term on the right-hand side of (27)
as

ṡ

∫
Rd
us log u dx ≤ ṡ

s

[∫
Rd
ϕ∗(−λ∇ log(us))us dx+ log

(∫
Rd
us dx

)∫
Rd
us dx

]
.

(29)

Fix ϕ(x) = |x|2
2 . Then, ϕ∗(µ) = |µ|2

2 . Thus
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Rd
ϕ∗(−λ∇ log(us))us dx =

1

2
(λs)2

∫
Rd
|∇u|2us−2 dx = 2λ2

∫
Rd
|∇(u

s
2 )|2 dx.

(30)

Then, combining (27), (28), (29) and (30), we obtain

d

dt

∫
Rd
us dx ≤ (g(t)− f(t))

∫
Rd
|∇(u

s
2 )|2 dx+

ṡ

s
log

(∫
Rd
us dx

)∫
Rd
us dx,

where

f(t) =
4(s(t)− 1)

s(t)
and g(t) =

2λ2ṡ(t)

s(t)
.

Now, we select ṡ ≥ 0 such that

g − f = 0;

that is,

ṡ =
2s− 2

λ2
, (31)

whose solution is (25). Hence, for s such that (31) holds, we have the following
differential inequality

d

dt

∫
Rd
us dx ≤ ṡ

s
log

(∫
Rd
us dx

)∫
Rd
us dx.

Fix z(t) =
∫
Rd u

s dx and h(t) = ṡ
s = d

dt log(s(t)). Thus, the previous inequal-
ity simplifies to

ż(t) ≤ h(t) log(z(t))z(t).

Rewriting, we get
ż(t)

log(z(t))z(t)
≤ h(t)

and thus
d

dt
(log(log(z(t)))) ≤ d

dt
log(s(t)).

Finally, with s(0) = p, integrating the prior expression leads to

log(log(z(t))) ≤ log(s(t)) + log(log(z(0)))− log p

and thus

z(t) ≤ exp{exp{log(s(t)) + log(log(z(0)))− log p}} = z(0)
s(t)
p = ‖u0‖s(t)Lp(Rd).

Hence, (26) follows. �
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Remark 3. 1. If s(0) = 1 in the previous proposition, (25) forces s(t) = 1 for
all t ≥ 0, which makes (26) trivial.

2. For t such that s(t) > 2, interpolation yields, for some λ(t),

‖Φ‖L2(Rd) ≤ ‖Φ‖
λ(t)

L1(Rd)‖Φ‖
1−λ(t)
Ls(t)(Rd) ≤ C.

By the estimate in Theorem 4, we have ‖Φ‖L2(Rd) ≤ Ct−
d
4 . Hence, our esti-

mate still yields a sharper result.
3. For the fundamental solution Φ of the heat equation, the prior hyper-

contractivity result yields ‖Φ‖Ls(t)(Rd) ≤ C, where C is a fixed constant. On
the other hand, a direct estimate yields

‖Φ‖Ls(t)(Rd) = (4πt)−
d
2

(∫
Rd
e−

s(t)|x|2
4t dx

) 1
s(t)

= s(t)−
d

2s(t) (4πt)−
d(s(t)−1)

2s(t) .

Since s(t)−
d

2s(t) → 1 and s(t)−1
s(t) → 1 as t → ∞, we have that the hypercon-

tractivity estimate does not provide information about the decay of Lebesgue
norms.

3.3.1 Estimate curves

We are now interested in finding a norm function, s(t), for a specific estimate.
We start by analyzing estimates for the fundamental solution. By Remark 3,
for a fixed estimate a > 0, the curve s(t) such that ‖Φ‖Ls(t)(Rd) = a is given
implicitly by

s(t) = a−
2s(t)
d (4πt)1−s(t). (32)

Using a numerical solver in Mathematica, with d = 3, Figure 1 shows the
curve s(t) for different time intervals and values of a.

0.00002 0.00004 0.00006 0.00008 0.000101.0

1.1

1.2

1.3

1.4

0.01 0.02 0.03 0.04 0.05

10

20

30

40

Fig. 1 s(t) paths for 2 ≤ a ≤ 15 up to t = 0.0001 and t = 0.05
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Here, we are considering solutions of (32) such that s(t) ≥ 1. Such solu-
tions only occur up to a certain time Ta, depending on a, which defines a
vertical asymptote of s(t). Using Mathematica again, we conclude that, for

any dimension, Ta is given explicitly by Ta = 1/(4πa
2
d ). Next, we deduce

a similar estimate for the curves s̃(t) regarding the result from Theorem 4
for general solutions of (22). Fixing s(t) = p and γ = p/2, we have that, by
Sobolev’s inequality and interpolation,

d

dt
‖u‖p

Lp(Rd) = −4(p− 1)

p

∫
Rd
|D(uγ)|2 dx

≤ −4(p− 1)

pC2
d

(∫
Rd
u2
∗γ dx

) 2
2∗

≤ −4(p− 1)

pC2
d

‖u‖
2γ(λ−1)

λ

L1(Rd)

(∫
Rd
up dx

) 1
λ

,

where λ = d(p−1)
2+d(p−1) and Cd is the Sobolev’s inequality constant, which only

depends on the dimension. By [13], the sharp Sobolev’s constant is given
explicitly by

Cd = (πd(d− 2))−
1
2

(
Γ (d)

Γ
(
d
2

)) 1
d

.

Then, similar to the proof of Theorem 4, we have that

‖u‖Lp(Rd) ≤
(

4(p− 1)(1/λ− 1)

pC2
d

) 1
p(1−1/λ)

‖u‖L1(Rd)t
1

p(1−1/λ) .

Now, for a fixed a, the curve s̃(t) such that ‖u‖Ls̃(t)(Rd) ≤ a is given implicitly
by

2−
3d(s̃(t)−1)

2s̃(t)

(
1

s̃(t)
(d− 2)π1+ 1

d

(
2d−1Γ

(
d+ 1

2

))− 2
d

)− d(s̃(t)−1)
2s̃(t)

‖u‖L1(Rd)t
− d(s̃(t)−1)

2s̃(t) = a.

With d = 3 and ‖u‖L1(Rd) = 1, Figure 2 shows the curve s̃(t) for different
time intervals and values of a.

We now compare both norm curves. Fix a such that ‖Φ‖Ls(t)(Rd) = a.
Figure 3 illustrates ‖Φ‖Ls̃(t)(Rd), for different values of a.

Hence, for all t > 0, ‖Φ‖Ls̃(t) ≤ a and norm decay is still verified. Fur-
thermore, we also compare the nature of both norms near t = 0, by studying

the limit of s(t)−1
s̃(t)−1 as t → 0. Figure 4 suggests that limt→0

s(t)−1
s̃(t)−1 < ∞, also

indicating that s(t) and s̃(t) might have similar behavior near t = 0.
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Fig. 2 s̃(t) paths for 2 ≤ a ≤ 15 up to t = 0.0001 and t = 0.05
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Fig. 3 ‖Φ‖Ls̃(t)(Rd) for 2 ≤ a ≤ 15 up to t = 0.0001 and t = 0.05
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s̃(t)−1

4 The Porous Media Equation

The porous media equation (PME) is the following PDE{
ut(x, t) = ∆(u(x, t)m) in Rd × (0, T )

u(x, 0) = u0(x) in Rd,
(33)

for some m ∈ [1,∞) and where we take u ≥ 0. Note that m = 1 corresponds
to the heat equation. Here, we extend the ideas from the previous sections to
obtain integrability estimates for the solution of the PME. Next, we examine
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the Barenblatt solutions to show that our bounds are sharp. We conclude
this section by comparing our method with the results in [15].

4.1 Estimate methods revisited

We begin by applying our method to (33).

Theorem 5. Let u solve (33) with u ∈ C∞(Rd × [0,∞)). Then, for p ≥ 1,
the following estimate holds

‖u‖Lp(Rd) ≤ C‖u0‖
d(m−1)+2p
p(d(m−1)+2)

L1(Rd) t−
d(p−1)

p(d(m−1)+2) (34)

for all t > 0.

Proof. We begin by noticing that

d

dt

∫
Rd
up dx = p

∫
Rd
up−1∆(um) dx = −mp(p− 1)

∫
Rd
um+p−3|∇u|2 dx ≤ 0.

(35)

Fix γ = (m+ p− 1)/2. Then, (35) yields

d

dt

∫
Rd
up dx = −C

∫
Rd
u2γ−2|∇u|2 dx = −C

∫
Rd
|∇(uγ)|2 dx. (36)

By Sobolev inequality, we have that(∫
Rd
u2
∗γ dx

) 1
2∗

≤ C
(∫

Rd
|∇(uγ)|2 dx

) 1
2

. (37)

Using the interpolation inequality and 0 < λ < 1, we have that(∫
Rd
u2
∗γ dx

) 2λ
2∗

= ‖u‖2γλ
L2∗γ(Rd) = ‖u‖2γλ

L2∗γ(Rd) (38)

≥ ‖u‖2γ
Lp(Rd)‖u0‖

2γ(λ−1)
L1(Rd) ,

where λ = d(p−1)(m+p−1)
p(2+d(m+p−2)) . Hence, (36), (37) and (38) lead to

d

dt

∫
Rd
up dx ≤ −C‖u0‖

2γ(λ−1)
λ

L1(Rd)

(∫
Rd
up dx

) 2γ
λp

.

Let z(t) =
∫
Rd u

p dx. Then, the previous inequality can be written as ż ≤

−C‖u0‖
2γ(λ−1)

λ

L1(Rd) z
β , where β = 2γ/(λp) > 1. As before, we get the following
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time estimate

z(t) ≤ C‖u0‖
2γ(λ−1)
λ(1−β)
L1(Rd) t

1
1−β = C‖u0‖

d(m−1)+2p
p(d(m−1)+2)

L1(Rd) t
d(1−p)

d(m−1)+2

and, thus, (34) follows. �

Next, we consider an estimate for a known solution to (33) and compare it
to the prior estimate.

4.2 Barenblatt solutions

The Barenblatt solution of the PME has the following explicit formula, for
an arbitrary constant C > 0,

U(x, t) = t−α(C − k|x|2t−2σ)
1

m−1

+ ,

where (s)+ = max{s, 0} and

α =
d

d(m− 1) + 2
, σ =

α

d
, k =

α(m− 1)

2md
.

Denote the ball centered at the origin with radius R = (Ct2σ/k)
1
2 by BR.

Then, with u = U , we have∫
Rd
Up dx =

∫
BR

Up dx = t−pα
∫
BR

(C − k|x|2t−2σ)
p

m−1 dx

= t−pα
∫
BR

(C − k|y|2)
p

m−1 tσd dy

= Cm,p,kt
−pα+σd = Cm,p,kt

α(1−p) = Cm,p,kt
− d(p−1)
d(m−1)+2 ,

where we considered the change of variables y = x/tσ, with dx = tσd dy.
Then, by comparison with (34), we conclude that our estimate is sharp.

4.3 Comparison with previous work

We now compare the results of our method with estimates in the literature.
In [14], using phase-plane analysis, scaling techniques, and self-similarity, it
was shown that

‖u‖Lp(Rd) ≤ C‖u0‖
σ(p,q)

Lq(Rd)t
−α(p,q)

with
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α(p, q) =
d(p− q)

p(d(m− 1) + 2q)
, σ(p, q) =

q(d(m− 1) + 2p)

p(d(m− 1) + 2q)
.

In our case, we fix q = 1 to get

‖u‖Lp(Rd) ≤ C‖u0‖
σ(p,1)

L1(Rd)t
−α(p,1) = C‖u0‖

d(m−1)+2p
p(d(m−1)+2)

L1(Rd) t−
d(p−1)

p(d(m−1)+2)

which yields the same estimate as in (34). Hence, our technique provides a
different method to establish the results in [14] without relying on symmetry
arguments.

4.4 Periodic solutions of the porous media equation

We now the deduce a similar estimate for the porous media equation on Td.

Proposition 3. Let u solve (33) on the torus with u ∈ C∞(Td × [0,∞)).
Then, there exists T > 0 such that the following holds

‖u‖Lp(Td) ≤ C‖u0‖
d(m−1)+2p
p(d(m−1)+2)

L1(Td) t−
d(p−1)

p(d(m−1)+2) (39)

for all t ∈ [0, T ). For t > T , ‖u‖Lp(Td) ≤ C‖u0‖
d(m−1)+2p
p(d(m−1)+2)

L1(Td) T−
d(p−1)

p(d(m−1)+2) .

Proof. Fix γ = (m + p − 1)/2, thus 2γ > p. From (36), we have that
d
dt

∫
Rd u

p dx = −C
∫
Rd |∇(uγ)|2 dx. Then,(∫

Td
up dx

) γ
p

≤ ‖u0‖γ(1−λ)L1(Td)

(∫
Td
u2
∗γ dx

) λ
2∗

≤ ‖u0‖γ(1−λ)L1(Td)

(
‖u0‖L1(Td) +

∫
Td
|D(uγ)|2 dx

)λ
2

≤ ‖u0‖γ(1−λ)L1(Td)

(
‖u0‖L1(Td) − C

d

dt

∫
Td
up dx

)λ
2

,

where λ = d(p−1)(m+p−1)
p(2+d(m+p−2)) . Then, fixing z(t) =

∫
Td u

p dx, we get the following

differential inequality ż ≤ C1‖u0‖L1(Td) − C2‖u0‖
2γ(λ−1)

λ

L1(Td) z
β , where β = 2γ

λp .

Hence, by Lemma 2, there exists T > 0 such that z satisfies

z(t) ≤ C‖u0‖
d(m−1)+2p
p(d(m−1)+2)

L1(Td) t
d(1−p)

d(m−1)+2

for t ∈ [0, T ), which yields (39). For t > T ,

‖u‖Lp(Td) ≤ C‖u0‖
d(m−1)+2p
p(d(m−1)+2)

L1(Td) T−
d(p−1)

p(d(m−1)+2) .
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�

5 Differential Inequalities

In this appendix, we present some of the estimates regarding differential
inequalities used here.

Lemma 1. Let z : (0,∞)→ (0,∞) be a differentiable function satisfying the
differential inequality

z′(t) ≤ −Cz(t)β (40)

for some constant C > 0 and β > 1. Then, z satisfies

z(t) ≤ Cβt
1

1−β

for all t > 0.

Proof. Let z ≡ z(t) and ż ≡ z′(t). Since β − 1 > 0, multiplying both sides of
(40) by −(β−1)z−β leads to −(β−1)z−β ż ≥ (β−1)C. Next, we observe that
the left-hand side in the prior equation is d

dt (z(t)
1−β). Hence, integrating in

time, we get

z(t)1−β ≥ z(0)1−β(1 + z(0)β−1(β − 1)Ct).

Therefore,

z(t) ≤ z(0)

(1 + z(0)β−1(β − 1)Ct)
1

β−1

≤ 1

(z(0)1−β + (β − 1)Ct)
1

β−1

≤ 1

((β − 1)Ct)
1

β−1

.

Hence, since 0 < z(0) < ∞, z satisfies z(t) ≤ Cβt
1

1−β for some constant
Cβ > 0 depending on β. �

Lemma 2. Let z : (0,∞)→ (0,∞) be a differentiable function satisfying the
differential inequality

ż ≤ C1z
θ − C2z

β (41)

for constants C1, C2 > 0, and 1 ≤ θ < β. Then, there exists T > 0 such that

z(t) ≤ Cβt
1

1−β

for t ∈ (0, T ). Moreover, for t > T , z(t) ≤ CβT
1

1−β .

Proof. The function
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z 7→ C1z
θ − C2z

β

has a single positive zero z. Fix z0 > z such that

C1(z)θ − C2(z)β < −C̃zβ

for z > z̃. Consider the solution z∗(t) of

ż∗ = −C̃zβ∗

defined on (0,+∞) with limt→0 z∗(t) = +∞. Define T by

z∗(T ) = z̃.

Then, if z satisfies (41), we have z(t) ≤ z∗(t) for t ≤ T and z∗(t) ≤ z̃ for
t ≥ T . Thus, by computing z∗ and then z̃ as a function of T , we conclude

that z(t) ≤ Ct
1

1−β for all t ∈ (0, T ) and z(t) ≤ CT
1

1−β for t > T . �
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8. Ansgar Jüngel. Entropy methods for diffusive partial differential equations. Springer,

2016.
9. Martina Magliocca. Regularizing effect and decay results for a parabolic problem with

repulsive superlinear first order terms. arXiv preprint arXiv:1712.09246, 2017.
10. Martina Magliocca and Alessio Porretta. Local and global time decay for parabolic

equations with super linear first order terms. arXiv preprint arXiv:1707.01761, 2017.

11. Edward Nelson. The free Markoff field. Journal of Functional Analysis, 12(2):211–227,
1973.

12. Barry Simon and Raphael Høegh-Krohn. Hypercontractive semigroups and two dimen-

sional self-coupled bose fields. Journal of Functional Analysis, 9(2):121–180, 1972.
13. Giorgio Talenti. Best constant in sobolev inequality. Annali di Matematica pura ed

Applicata, 110(1):353–372, 1976.

14. Juan Luis Vázquez. Smoothing and decay estimates for nonlinear diffusion equations:
equations of porous medium type, volume 33. Oxford University Press, 2006.

15. Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford Uni-

versity Press, 2007.


	A Priori Regularity ofParabolic Partial Differential Equations
	F. Berkemeier and Diogo A. Gomes
	Introduction
	Fokker-Planck Equations
	Integrability conditions on the divergence of the advection
	Integrability conditions on the advection
	The adjoint method

	The Heat Equation
	Main estimate
	Entropy methods
	On logarithmic Sobolev inequalities and hypercontractivity

	The Porous Media Equation
	Estimate methods revisited
	Barenblatt solutions
	Comparison with previous work
	Periodic solutions of the porous media equation

	Differential Inequalities
	References



